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Abstract

We quantify how large, unexpected energy-price hikes affect Italian industrial firms during the
2021-22 energy crisis. For identification we exploit the staggered expiration of fixed-price energy
contracts. Contract expiration raises firms’ electricity prices by 47 percent and gas prices by 29
percent. Electricity demand does not respond, while gas consumption falls only in the second
half of 2022, yielding a short-run price-elasticity of 1.1 overall and close to zero for gas-intensive
producers. Heterogeneity and contractual arrangements thus interact to shape the real-economy
impact of energy crises. Our estimates imply that broad-based gas bill subsidies could triple
industrial demand relative to subsidies targeted at gas-intensive firms.
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1 Introduction

How do firms cope with a large and sudden upsurge in energy prices? Until recently, this
question had little practical relevance. However, the 2021-2022 EU energy crisis changed
that perspective, with natural gas prices skyrocketing tenfold – from 30 to 300 euros per
megawatt-hour (MWh) – triggering an unprecedented spike also in electricity costs across
Europe.

The energy shock elicited swift policy responses from EU governments, including energy
bill subsidies, VAT reductions, and excise tax cuts to shield firms – and especially energy-
intensive ones – from severe economic fallout. Yet, these support measures raised concerns
among economists about diminishing incentives for energy conservation, potentially wors-
ening the crisis (Signorini, 2022; Zettelmeyer et al., 2022).

The relevance of these concerns hinges on a key parameter: the price elasticity of energy
demand (Gros, 2022). Despite its importance, there is limited micro-level evidence on this
parameter during periods of large price volatility. Existing papers using microdata have
typically focused on smaller, less disruptive energy price shocks from earlier periods (von
Graevenitz and Rottner, 2022; Fontagné et al., 2024; Gerster and Lamp, 2024), limiting their
applicability to understanding how firms navigate severe crises.

This paper examines firm-level energy demand and input substitution during the 2021-2022
energy crisis, leveraging a unique dataset that combines survey responses with detailed
administrative data. For identification, we exploit the staggered expiration of fixed-price
energy contracts. In the survey, firms report whether they had fixed-price contracts secured
before the crisis and their duration, which we use in a staggered difference-in-differences
framework. Specifically, we compare firms that lose fixed-price protection during the ob-
servation period to those whose protection will expire later or does not expire within the
observation window.

To estimate effects, we rely on the imputation estimator of Borusyak et al. (2024). However,
our results are robust to alternative staggered difference-in-difference estimators (De Chaise-
martin and dHaultfoeuille, 2020; Callaway and SantAnna, 2021; Sun and Abraham, 2021) and
to the synthetic difference-in-differences method (Arkhangelsky et al., 2021), which allows to
considerably loosen the requirement of parallel trends between treated and control units and
addresses concerns related to pre-trend testing (Roth, 2022). Results are also robust when
controlling for non-parametric time trends that vary at the level of industry affiliation and
energy-intensity.
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Our analysis reveals that the expiration of fixed-price contracts leads to a sudden increase in
the retail prices of electricity and natural gas at the firm level. The effect sizes are economically
meaningful: retail prices for the average firm rise up to 47% in the case of electricity and
29% in the case of natural gas, even after accounting for government policies that partially
mitigated price increases. These findings underscore the critical role of fixed-price contracts,
widely used for various input purchases (Kumar and Wesselbaum, 2024), in the transmission
of macroeconomic shocks.

In response to substantial price increases, firms exhibit markedly different patterns of adjust-
ment across energy inputs. On average, firms make no changes to their electricity consump-
tion. In contrast, natural gas consumption declines sharply, but this reduction - measured
at 35% – occurs exclusively in the second half of 2022. The delayed adjustment aligns with
firms increasingly pessimistic expectations during the summer of 2022, as spot gas prices sur-
passed 300 euros per MWh, and futures markets projected sustained high prices of around
200 euros per MWh through mid-2023. Combining these observed quantity adjustments and
corresponding price increases, we estimate the price elasticity of natural gas demand to be
-1.1 in the second half of 2022, while it remains effectively zero at other times.

During the recent energy crisis, EU policymakers gave larger subsidies to energy-intensive
firms (McWilliams et al., 2024). Providing an assessment on whether this type of target-
ing was more or less effective at energy conservation requires us to go beyond estimating
elasticities for the “average” firm. Economic theory offers mixed predictions about whether
elasticities would be higher for energy-intensive firms, as this depends on several parame-
ters, including the elasticity of substitution (Cahuc et al., 2014). This leaves the question to
be resolved empirically.

Using random forests to detect treatment effect heterogeneity, we show that gas-intensive
companies reduced gas consumption significantly less than other firms, a result confirmed
also when using confidential administrative data on monthly gas usage among these firms.
Gas-intensive firms exhibit a very low price elasticity of -0.03, compared to -1.3 for other
firms. This difference appears driven by a low elasticity of substitution between gas and
other inputs among gas-intensive firms. Two pieces of evidence support this. First, survey
responses indicate that gas-intensive producers almost uniformly classify natural gas as an
essential input. Second, plant-level data for EU-ETS facilities reveal little switching from gas
to alternative fossil fuels. By contrast, these same energy-intensive firms raised their output
prices markedly more than other firms, passing a substantial share of the cost shock on
to customers, regardless of their cohort of treatment. Taken together, the pricing response
and the lack of technological substitution provide a coherent explanation for the very low
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demand elasticity observed among energy-intensive producers.

Our results carry significant implications for the design of support measures. We perform
a simple back-of-envelope calculation calibrated to Italy, where we simulate the effect of
a subsidy covering 40% of the retail gas price for firms. For example, consider a subsidy
that is targeted to gas-intensive companies, a group accounting for 80% of industrial gas
consumption. This would increase demand by 80 million SMC. Conversely, when targeted
to non-gas-intensive firms, the same subsidy can increase demand up to 167 million SMC.

We contribute to the literature on energy demand elasticities for firms.1 From a substantive
perspective, we make a unique contribution by estimating elasticities during a period of
severe crisis. This is relevant because such parameters may exhibit nonlinearities depending
on the size of the shock, rendering local estimates less informative in crisis times (Geerolf,
2022). For instance, studies on electricity demand that examine small price shocks tend to
find larger elasticities (0.4-0.5) than those exploiting larger variations (0.1-0.2) (Marin and
Vona, 2021; von Graevenitz and Rottner, 2022; Fontagné et al., 2024; Blonz, 2022; Gerster
and Lamp, 2024). Using even larger shocks, we find that the elasticity approaches zero.
For natural gas, we provide two novel findings. First, elasticities increase as the crisis
unfolds, consistently with the idea that long-run elasticities are higher (Deryugina et al.,
2020). Second, gas-intensive firms are less elastic compared to the average industrial firm, as
they are more likely to declare this input is essential. From a methodological perspective, our
study introduces a novel identification strategy based on the staggered expiration of fixed-
price contracts. This approach appears more credible than earlier studies, which exploit
sectoral or time-series variation (Burke and Abayasekara, 2018; Csereklyei, 2020; Graf and
Wozabal, 2013; Davis and Muehlegger, 2010; Hausman and Kellogg, 2015; Faiella et al., 2022).

We also contribute to the literature on the 2021-2022 energy crisis. Previous studies have
looked at inflation and output effects (Ruhnau et al., 2023; Alessandri and Gazzani, 2023;
Moll et al., 2023; Lafrogne-Joussier et al., 2023). In this paper we provide the first firm-
level evidence on industrial firms’ input demand, highlighting the role of treatment effect
heterogeneity across time, energy source and firms’ type. Our micro elasticities can also
inform macroeconomic models on the crisis impact (Bachmann et al., 2022; Nakamura and
Steinsson, 2018).

1While household demand elasticities are well-studied (Reiss and White, 2005; Jessoe and Rapson, 2014;
Auffhammer and Rubin, 2018; Hahn and Metcalfe, 2021; Costa and Gerard, 2021; Deryugina et al., 2020),
estimates for industrial firms are scarce.
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2 Data

The primary data source is the Inquiry into investments of industrial and services firms
(henceforth, Invind), an annual Bank of Italy survey, representative of industrial and ser-
vices firms with at least 20 employees and routinely used for institutional purposes. The
Bank surveys the same companies every year, adjusting for firm exit and addressing unit
non-response through raking post-stratification that aligns survey weights with population
distributions. Widely used in the literature, Invind has informed research on topics such
as productivity shocks (Pozzi and Schivardi, 2016), bankruptcy law (Rodano et al., 2016),
investment demand (Guiso and Parigi, 1999; Bond et al., 2015), agglomeration economies
(Andini et al., 2013), and management practices during Covid-19 (Lamorgese et al., 2024).

A key advantage of Invind is its detailed, timely data on firms’ energy expenditures, con-
sumption, and hedging strategies in 2021 and 2022 – information that is not available in
balance-sheet datasets.2 To collect this data, we introduced an ad hoc energy section to the
2021 wave, administered in spring 2022, targeting industrial firms with 50 or more employees.
This section gathered semester-level electricity and gas expenditures (ine ) and consumption
(in MWh and cubic meters) for the previous year, excluding self-produced energy. Firms
were also asked about fixed-price contracts or equivalent hedging tools in place at the be-
ginning of 2021 – before the start of the crisis –, forming the basis of our treatment variable
(Section 2.a). The next year wave collected analogous data for 2022, adding information on
tax credits under the energy cost relief program implemented by the government.3

We ensure self-reported data on energy consumption are plausible and aligned with admin-
istrative records, where available, applying a cleaning algorithm to correct systematic errors
(e.g., KWh instead of MWh). Validation results, detailed in Appendix C, confirm the data
reliability. The response rate to the energy section is high (around 50%) and our results are
robust to addressing selective item non-response with inverse-probability weighting (Ap-
pendix D). In all our analyses, we focus on firms that use energy as an input, thus excluding
NACE sectors 19 (manufacture of coke and refined petroleum products) and 35 (electricity,
gas, steam and air conditioning supply).

For the subset of energy-intensive firms, we use confidential administrative records from the
Fund for Energy and Environmental Services (CSEA), which we match to our survey through
unique tax identifiers. This group includes nearly 3,800 firms, which collectively account for
80% of industrial natural gas consumption, 45% of industrial electricity consumption, and

2For background information on the retail energy market in Italy see Appendix A.
3We report all the questions in Appendix B.
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17% of the sector’s value added. For electricity-intensive firms CSEA data include monthly
electricity consumption since 2018 and up to 2022. As for gas-intensive firms, we observe
monthly gas consumption for the years 2019, 2021, and 2022.4

For the subset of firms owning plants subject to the EU Emissions Trading System (EU ETS),
we gather additional confidential information from the Italian Institute for Environmental
Protection and Research (ISPRA), including yearly plant-level fuel use, which we use to study
input substitution. In Italy the EU ETS includes around 1.000 plants belonging to 300 firms.
In 2019 these facilities accounted for 63.5% of natural gas consumption in the industrial
sector, while their share of value added was approximately 1.5%.

We use data from the Italian National Institute of Statistics (Istat) on energy intensity by 2-
digit NACE industries and Eurostat data on average retail prices and consumption brackets
for industrial consumers to validate our survey measures (see Appendix C). Additionally,
we use the 2022 Bank of Italy’s Business Outlook Survey of Industrial and Service Firms
(Sondtel) to identify firms which declare natural gas to be an “essential” input; we consider
this a proxy for low elasticity of substitution between gas and other inputs.

2.a Treatment variables

In the 2021 wave of the survey, firms were asked:

“At the beginning of 2021, did your firm own any instrument that protected it,
wholly or partly, from the energy price increases over the second half of the year?”

This comes with four possible replies: (a) No (b) Yes, fixed-price contracts (c) Yes, financial
derivatives (d) Yes, other instrument. Since most protected firms reported using fixed-
price contracts, we combined all “Yes” responses into a dummy variable called �2021

8
(=1 if

protected).

Two things are worth noticing. First, contracts had to be in place at the beginning of 2021,
prior to any anticipation of the crisis.5 Thus the question does not capture endogenous firms’
responses to the crisis. Second – due to space constraints – the question conflates protection
for electricity and gas, introducing potential measurement error. Reassuringly, this variable

4These firms qualified for energy bill discounts even before the crisis. Eligibility required annual energy
consumption over 1 GWh and operation in specific 4-digit NACE sectors per EU State Aid rules. Some sectors
faced additional criteria, related to energy intensity. Subsidies reduced price components like renewable energy
fees, which were waived for smaller firms in late 2021 and all firms by January 2022.

5As late as March 2021, future markets predicted October TTF natural gas prices to match the preiovus
five-year average (around 15 euro), with expectations rising to 36 euro by July, still below the realized price of
76 euro.
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strongly predicts changes in unit costs for both inputs between the first and second semester
of 2021.

In the 2022 wave of the survey, the question was split by input type:

“In 2022, did your firm have instruments (for example fixed-price contracts or
derivatives) to protect itself, even partially, from rises in the prices of electricity
(natural gas)?”

The response options were: (a) Yes (b) No. Similarly to before, for a given input 9 =

{electricity, natural gas}, we created a dummy called �
9 ,2022
8

taking value 1 if the firm 8 had
any protection instruments for input 9. Firms with protection were also asked:

“If yes, how many months did this protection last in 2022?”

The open-ended responses were recorded as < 9

8
for the respective input 9.

Restricting our attention to firms present in both waves, we constructed an input-specific
treatment cohort variable �

9

8
that identifies the semester ℎ when a firm is first exposed to

higher prices for input 9 (0 if it is never exposed in the observation window). The variable is
constructed as follows:

�
9

8
=



2021ℎ2, if �2021 = 0 and � 9 ,2022 = 0

2022ℎ1, if �2021 = 1 and � 9 ,2022 = 0

2022ℎ2, if �2021 = 1 and � 9 ,2022 = 1 and <
9

8
= 6

0, if �2021 = 1 and � 9 ,2022 = 1 and <
9

8
= 12

(1)

All firms are untreated in 2021ℎ1 since the wholesale market crisis had not yet started. Firms
with fixed-price contracts signed before the crisis remain untreated in later periods until
their contracts expire.6 We classify firms into four treatment cohorts based on �

9

8
.

Firms with �2021 = 0 and � 9 ,2022 = 0 are immediately exposed in 2021h2 (� 9

8
= 2021ℎ2; early

treated). This cohort includes firms on variable-price contracts and those with fixed-price
contracts expiring during 2021h2. In Section 4.a we confirm the absence of differential
treatment effects for this group, mitigating concerns that its composition may affect the
results.

Firms with �2021 = 1 and � 9 ,2022 = 0 are exposed in 2022h1 (� 9

8
= 2022ℎ1) due to contract

6Fixed-price contracts signed after the crisis began offer limited protection due to increased prices. Contracts
signed early in 2022 may have provided savings over variable pricing but at higher costs than pre-crisis contracts.
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expiration at the end of 2021 (mid treated). By 2022, these firms face higher energy costs
regardless of whether they purchase a new fixed-price or variable-price contract, as both
became more expensive following the start of the crisis in late 2021.

Firms with �2021 = 1 and < 9 = 6 are protected until mid-2022, when their fixed-price contracts
expire (late treated). We assume these are the first 6 months of the year. In particular, we
assume that at the beginning of 2021 the firm was holding a fixed-price contract signed at the
beginning of 2021 that eventually expired in mid-2022. Thus, we set � 9

8
= 2022ℎ2 for these

firms. We test the validity of this assumption in our event-study analysis by checking that
price of input 9 increases in line with our assumed timing for this specific cohort (see Section
4.a).

Firms with�
9

8
= 0 are protected throughout 2021 and 2022 (pure control group). Note that the

formulation of our question in 2022 does not ensure that the pure control group are protected
under the exact same contract signed at the beginning of 2021, for which they declared to
be protected in the first survey. In principle, they might have purchased a new fixed-price
contract in January 2022, but in the results section we show that this is not consistent with our
data. In particular we show that the price of energy input 9 for the “mid treated” increases
relative to the “pure control group” starting in 2022h1, ruling out the possibility that both
cohorts had contracts expiring at the end of 2021.

The electricity and gas samples comprise 413 and 308 firms, respectively.7 We excluded two
subgroups of firms: (a) firms protected for only part of a semester in 2022 (1 ≤ <8 ≤ 5 or
7 ≤ <8 ≤ 11), which ensures binary treatment status during protection periods and helps
interpretability. This subgroup consists of 31 and 20 firms in the case of electricity and gas,
respectively; (b) Firms unprotected in 2021 (�2021 = 0) but protected in 2022 (�2022 = 1), as this
protection may reflect endogenous responses to the shock. These are 14 and 32 firms in the
electricity and gas sample, respectively.

In Appendix E we report balancing tables for sectoral and energy-intensity related covariates
across different treatment cohorts. One concern could be that firms with higher energy in-
tensity or in particular sectors would select into longer contracts – and this type of selection is
related to potential trends in outcomes. While we highlight some significant level differences
across groups, these do not appear economically relevant. To avoid any concerns, in Ap-
pendix F we show that results are virtually unchanged when controlling for sector-specific
and energy-intensity specific non-parametric time trends.

7In the case of electricity, going from the early treated to the pure control group, the number of firms in each
cohort is 176, 150, 11, 76. As for gas, the same figures are 128, 124, 7, 49. Summary statistics can be found in
Appendix E.
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Extensions with confidential administrative data Depending on the structure of our ad-
ditional data sources, we adapt the definition of the �

9

8
variable. As for electricity and gas-

intensive firms, we observe monthly electricity and natural gas consumption, respectively.
We can thus define more fine-grained cohorts. We match our data to the Invind survey to
obtain information on fixed-price contracts. In order to avoid having cohorts with very few
firms, we collapse the data at the quarterly frequency and re-define cohorts of treatment as
follows:

�
9

8
=



2021@3, if �2021 = 0 and � 9 ,2022 = 0

2022@1, if �2021 = 1 and and 0 ≤ <
9

8
< 3

2022@2, if �2021 = 1 and and 3 ≤ <
9

8
< 6

2022@3, if �2021 = 1 and and 6 ≤ <
9

8
< 9

2022@4, if �2021 = 1 and and 9 ≤ <
9

8
< 12

0, if �2021 = 1 and <
9

8
= 12

(2)

For the electricity-intensive case, the balanced matched sample includes 279 firms8 over the
period 2020-2022. For the gas-intensive case, our balanced matched sample includes 126
firms9 in 2021 and 2022.

As for firms subject to the EU ETS, we have yearly information on fuel use that we match to
the Invind survey. We aggregate treatment cohorts into a yearly variable for gas only, �60B

8
,

again aligning the time dimension of treatment and outcome variables:

�
60B

8
=


2021, if �2021 = 0 and �2022,60B = 0

2022, if �2021 = 1 and �2022,60B = 0

0, if �2021 = 1 and �2022,60B = 1 and <
60B

8
= 12

(3)

The matched EU ETS-Invind sample includes 107 plants (66 firms).10

3 Empirical strategy

We estimate the effect of higher electricity and gas prices on firms’ input demands using
models of the type:

8Going from the earliest treated to the latest treated, cohorts have the following number of firms: 106, 99, 5,
5 and 19

9Going from the earliest treated to the latest treated, cohorts have the following number of firms: 38, 31, 4,
4 and 14. The pure control group includes 35 firms.

10The 2021 (2022) cohort is made of 53 (20) plants. The pure control group has 34 plants.
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log H8 9C = 8 + �C +
3∑

:=0
�8 9: · 1(C − �

9

8
= :) + &8 9C , (4)

where H8 9C is the quantity (@) or retail price (?) of energy input 9 for firm 8 in semester C. Firm
(8) and calendar-time (�C) fixed effects control for time-invariant firm-specific characteristics
and common time-varying shocks, respectively. Event-time dummies, 1(C − �

9

8
= :), capture

time relative to the contract expiration date �
9

8
(event time, henceforth).11 We are interested

in potentially heterogeneous treatment effects (�8 9:) of contract expiration on ? and @.

We estimate each model on a balanced panel of firms over 2021-2022 using the Borusyak et al.
(2024) “imputation estimator”, which identifies the ATT under standard parallel trends and
no-anticipation assumptions. Appendix G confirms robustness using alternative diff-in-diff
estimators, including De Chaisemartin and dHaultfoeuille (2020), Callaway and SantAnna
(2021), Sun and Abraham (2021), and OLS. We cluster standard errors at the firm level to
avoid known serial correlation issues (Bertrand et al., 2004). Pre-treatment coefficients are
estimated separately for improved efficiency, reducing bias from correlation between treatment
effects and pre-trend estimates (Borusyak et al., 2024).

Parallel trends are plausible because contract expiration dates are predetermined, unrelated
to firms’ crisis responses, and tied to pre-2021 fixed-price contracts based on stable mar-
ket forecasts. Futures markets indicated no significant price surge before May 2021 (see
Appendix H). Pre-trend tests consistently support this assumption, with no evidence of vi-
olations. As for no-anticipation, pre-trend tests and the consistency of effects across cohorts
suggest that firms did not anticipate treatment, lending support to this assumption.

One concern involves the “early-treated” cohort (�8 = 2022ℎ1), which includes both firms
with expiring fixed-price contracts and those with variable-price contracts. The latter set of
firms may have had different characteristics, such as weaker preferences for price protection.
However, cohort-specific estimates show that effects are similar across cohorts (see 4.a).
Additionally, early-treated firms never serve as controls for other cohorts.

Another concern is selection into longer contracts based on unobserved preferences for
price certainty. Since firm-level fixed effects control for level differences, this only threatens
validity if these preferences correlate with abrupt changes in outcomes specifically at contract
expiration. This is unlikely, and the absence of pre-trends (see 4) supports this assumption.

Finally, given that we observe few periods across two years, one may wonder whether results

11See Section 2.a on how we construct this variable.
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are driven by seasonality. We find that both magnitude and precision of our results are
virtually unaffected when including firm × semester fixed effects, which control for firm-
specific seasonality.

To further validate our findings, we implement a synthetic diff-in-diff (SDID) exercise
(Arkhangelsky et al., 2021), following the procedure in Clarke et al. (2024) for staggered
treatment and using bootstrap for inference. This method explicitly matches on pre-trends
and addresses concerns related to pre-trend testing (Roth, 2022). This exercise confirms
robustness, ensuring our results are not driven by underlying pre-trends.

We estimate separate models to avoid multicollinearity stemming from the high correlation
in expiration dates across inputs. This could be problematic in case gas and electricity effects
reinforce each other, leading to omitted variable bias. This concern arises in two cases:
substitution between the inputs and scale effects. However, in this setting, neither issue is
problematic. Substitution was minimal during the crisis, as both gas and electricity prices
rose sharply. Regarding scale effects, as shown in Section 4, electricity demand does not
respond to higher prices, ruling out electricity-induced scale effects on gas. Similarly, the
lack of response in electricity demand rules out gas-induced scale effects on electricity.

4 Results

Figure 4.1 reports our baseline results. Following Borusyak et al. (2024), all plots report
point estimates and associated 95% confidence intervals for average causal effects �: , with
: = {0, 1, 2} and pre-trend coefficients from a separate regression for : = {−2,−1} (omitted
category is : = −3). In the top two panels the outcome is the log of retail price of electricity
and gas. Correspondingly, in the two bottom panels the outcome is the log of physical
quantities of electricity and gas purchased by the firm. Since many of the �: coefficients are
relatively large, in the text we describe the magnitude of the effects by commenting on 4�: −1.

In panel (a) we observe a significant increase in the retail price of electricity following
the expiration of fixed-price contracts, with no evidence of pre-trending effects before the
treatment occurs (the p-value of the pre-trend test is 0.13). A year and a half after expiration,
the price increase is 47% relative to the baseline, quite precisely estimated. A similar pattern
is seen in panel (b) for the retail price of natural gas. Again, there is no evidence of a pre-trend
(the p-value of the pre-trend test is 0.39) and estimates are precise. One and a half years after
expiration, the increase in gas price is 29% relative to the baseline.12

12These results also underline that commonly used shift-share identification strategies (Linn, 2008; Ganapati
et al., 2020; Marin and Vona, 2021), which combine nation-wide swings in energy prices and cross-sectional
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Figure 4.1: The effect of the expiration of a fixed-price contract on average prices and quantities of
energy inputs at the firm level.

(a) Average cost of electricity (b) Average cost of natural gas

(c) Quantity of electricity (d) Quantity of natural gas

Note: The figures show average causal effects of the expiration of a fixed-price contract on the average retail
prices of electricity and natural gas (panels (a) and (b)) and the corresponding demanded quantities (panels
(c) and (d)). Outcome variables are always in logs. Average causal effects before and after the treatment are
estimated in two separate regressions, using the “imputation” estimator by Borusyak et al. (2024), as described
in Section 3. Confidence intervals are at the 95% level.

In panel (c) we analyze the (log-)quantity of electricity purchased. Despite the large price
increase, this outcome does not respond to the treatment. Coefficients are positive, close
to zero and confidence intervals are tight. We interpret these as precisely estimated zeros.
In panel (d), we examine the (log-)quantity of gas and detect a different pattern. In the
first treatment period, the point estimate is almost zero, but it turns negative in the second
period and even more so in the third. The coefficient corresponding to the last period
implies that gas consumption decreases by 32% compared to the counterfactual with no
price increase. Results are virtually identical when controlling for sector-specific and energy-
intensity-specific non-parametric time trends (Appendix Figure F.1), with point estimates

variation in energy intensity, may suffer from measurement error, as noted by Lafrogne-Joussier et al. (2023).
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remaining effectively unchangeda. This addresses concerns that differential composition of
different treatment arms could bias our estimates.

One of the advantages of our staggered design is that we can disentangle whether the
dynamics of the effect are driven by cohort or calendar factors. On one hand, earlier treated
cohorts might have had more time to adjust. On the other hand, the crisis worsened over
time after Russia invaded Ukraine, potentially leading to changes in salience of the shock.

We find negative effects on gas consumption to be entirely driven by 2022h2, with zero effects
in earlier periods across cohorts (see Appendix G). This pattern is not due to differences in
the magnitude of the energy shock across calendar periods for a constant elasticity, as the
treatment effect on prices is relatively stable over time. Pooling across cohorts, the ATT on
gas consumption in 2022h2 is -35%, with 95% confidence interval between -44% and -25%.
We compute price-elasticities by scaling average quantity effects by average price effects (see
Appendix K for details on how we compute the elasticity). In the case of electricity, the
elasticity is zero throughout. As for gas, it is equal to -1.1 in 2022h2, and very close to zero
in previous semesters.

The increasing gas-demand elasticity, irrespectively of time-since-treatment, could reflect
changing expectations about the energy crisis. Early on, when the crisis was expected to
be short-lived, firms likely employed a “wait-and-see” strategy. In summer 2022, market
pessimism peaked: spot prices hit record highs, futures markets projected a prolonged crisis
and business confidence reached its trough (Appendix Figures A.1 and A.2). Fears of winter
gas shortages and prolonged high prices in 2022h2 likely prompted many firms to act, consis-
tent with “putty-putty” models where adjustment costs shape responses under uncertainty
(Pindyck and Rotemberg, 1983; Atkeson and Kehoe, 1999).

4.a Robustness: synthetic diff-in-diff

Figure 4.2 reports similar event-study graphs for electricity and natural gas using the syn-
thetic diff-in-diff methodology. We present the results for the three treatment cohorts sep-
arately, with the “donor pool” always drawn from the pure control group. Naturally, the
pre-trend matching can use more pre-treatment periods for the “late treated” than for the
“mid treated” and “early treated”, as we only have four periods at our disposal.
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Figure 4.2: Synthetic diff-in-diff estimates of the effect of the expiration of a fixed-price contract on
electricity and gas prices (P) and quantities (Q) for different treated cohorts.

(a) P of electricity;
early treated

(b) Q of electricity;
early treated

(c) P of natural gas;
early treated

(d) Q of natural gas;
early treated

(e) P of electricity for
mid treated

(f) Q of electricity for
mid treated

(g) P of natural gas;
mid treated

(h) Q of natural gas;
mid treated

(i) P of electricity; late
treated

(j) Q of electricity; late
treated

(k) P of natural gas;
late treated

(l) Q of natural gas;
late treated

Note: The figure shows average causal effects of the expiration of a fixed-price contract on the average retail prices
of electricity and natural gas, estimated with the synthetic difference-in-difference method in the staggered case
(Arkhangelsky et al., 2021; Clarke et al., 2024). The outcome variable is always in logs. Bootstrapped confidence
intervals are at the 90% level.

Across all cohorts, we observe that the retail price increases exactly at the time of expiration
of the respective fixed-price contract. This reassures us that our coding of the cohort-of-
treatment variable is correct. Moreover, the ATT estimates are qualitatively and quantitatively
similar to our baseline results, which shows robustness to a relaxation of the parallel trend
assumption. As in the staggered diff-in-diff, all three cohorts display very similar treatment
effects, confirming results are not driven by a specific cohort.

Finally, the synthetic diff-in-diff corroborates that the negative treatment effect on the quantity
of gas is driven only by what happens in 2022h2, while the time elapsed since contract
expiration does not matter, as all treated cohorts in a given calendar time period have similar
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coefficients.

In panel (j) we observe a statistically significant decrease in the quantity of electricity for the
late treated. This cohort is composed of a smaller number of firms, which is why this does
not show up in the average effect that we estimated with the Borusyak et al. (2024) estimator.

4.b Heterogeneity in gas demand response across firms in 2022h2

The ATT in 2022h2 for gas consumption might hide substantial heterogeneity, due to firm
characteristics, sectoral specificities, and particularly the large variation in energy intensity
across firms. Energy-intensive firms were the earliest and largest government aid recipients
during the 2021-22 crisis (McWilliams et al., 2024), but whether their demand is more or less
elastic than other companies is theoretically ambiguous, as it depends on several parameters,
including the elasticity of substitution between inputs (Cahuc et al., 2014).13

To investigate treatment effect heterogeneity in a credible way, we turn to machine learning
(ML) techniques, which have become popular for this aim in causal analysis in the context
of randomized control trials (Haaland and Roth, 2020; Allcott et al., 2020; Alpino et al.,
2022). We are among the first to apply these tools in the context of staggered difference-in-
differences (Hatamyar et al., 2023). In our view, the estimator by Borusyak et al. (2021) is
particularly well suited for this, as it provides a treatment effect estimate for each treated
observation. We can thus use it as an outcome variable and use random forests to find its
best predictors, in the spirit of Athey and Imbens (2016) and Wager and Athey (2018).14 The
advantages of this approach relative to a more traditional heterogeneity analysis are twofold:
first, the quest for heterogeneity is more efficient and also explores non-linear combinations
of the available covariates; second the procedure is less prone to bias arising from multiple
hypotheses testing.

The random forest algorithm highlights some key predictors of heterogeneity: a self-reported
dummy variable indicating whether gas is an essential input in production;15 a dummy for
being a gas-intensive firm according to the Italian legislation; and the EU ETS dummy.
Interestingly, the ML algorithm does not detect a large amount of heterogeneity between
industries, with only the food sector dummy being selected as a predictor. Firms in this
industry overwhelmingly declare gas to be an essential input.

13We provide formulae in Appendix I.
14We provide more details and extensive results in Appendix J.
15The dummy variable is derived from the Bank of Italys Business Outlook Survey of Industrial and Service Firms

(Sondtel) conducted in fall 2022. The survey posed the question: “At the beginning of 2022, was gas an essential
input for your firms manufacturing process?”. In the survey instructions, essential inputs are defined as those
whose absence -given the existing plants and machinery- would make production impossible in the short term.
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When computing heterogeneous treatment effects with the Borusyak et al. (2024) estimator
in the sub-samples selected by the ML algorithm and obtain the following results. In the
second half of 2022 the ATT is equal to -41% among firms for which gas is not considered
essential, and to -28% among those for which it is essential. Both estimates are significant
at the 99% level and their difference is significant at the 10% level. The associated price
elasticities of demand are -2.5 and -0.5, respectively, which suggests that the gas-essential
dummy can be considered as proxy for low elasticity of substitution, as the formulation of
the survey question suggests (see Appendix K for details on how we compute elasticities).

Interestingly, we find the ATT - and consequently the demand elasticity - to be near zero
among gas-intensive firms. Since all gas-intensive firms classify gas as an essential input,
their lower demand elasticity appears directly linked to the reduced substitutability of gas
with other inputs. Note that the heterogeneity unveiled in this section cannot be attributed to
sectoral dynamics, or else the ML algorithm would have selected several sector dummies as
key predictors. Furthermore, gas-intensive firms are spread throughout all industries except
water and waste management.

4.c Energy intensive firms

Previous analyses indicate that energy-intensive firms exhibit inelastic demand for both gas
and electricity. Given the policy significance of this group, we conduct a complementary
analysis using confidential administrative data on their energy consumption, which is exclu-
sively available for these firms. Figure 4.3 presents event-study graphs for the evolution of
gas and electricity consumption around the expiration of fixed-price contracts, at a quarterly
frequency. For electricity-intensive firms, the impact of losing fixed-price protection on the
(log-)quantity of electricity consumed remains negligible across all treated periods. This
finding closely mirrors the patterns observed for the average industrial firm, as detailed in
the first part of Section 4.

In the case of gas-intensive firms, the effects on gas consumption are minimal during the first
four quarters but become negative - albeit not statistically significant at conventional levels -
in the final two quarters. When the estimates are aggregated by calendar time, a noticeable
negative impact on gas consumption emerges only toward the end of 2022, consistently with
the baseline results. Aggregating by semester, the results indicate an ATT of -6% in the
second half of 2022, not statistically different from zero at conventional levels. This stands
in stark contrast to the -35% ATT observed for the average industrial firm in the baseline
analysis.
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Figure 4.3: Event-study estimates for the (log-)quantity of energy among energy intensive firms

(a) Electricity (b) Natural gas

Note: The figures show average causal effects of the expiration of a fixed-price contract on the (log-)quantity
of electricity for electricity intensive firms (panel a) and on the (log-)quantity of natural gas for gas intensive
firms (panel b). Average causal effects before and after the treatment are estimated in two separate regressions,
using the “imputation” estimator by Borusyak et al. (2024). Confidence intervals are at the 95% level.

Pass-through to final good prices The limited quantity response just documented for
energy-intensive firms does not imply that they bore the entire cost shock internally. A plau-
sible alternative adjustment channel is output-price pass-through. Using complementary
information from the Invind survey, we report cohort averages of year-on-year changes in
selling prices in Appendix Figure A.3. Two things are noticeable. First, all cohorts raise
prices markedly and almost synchronously during 2022, in line with the general inflationary
episode. This is consistent with recent evidence that firms price updating decisions do not
depend much on idiosyncratic cost shocks, but rather on rivals shocks (via strategic com-
plementarities) and on market-wide cost shocks (Duprez and Magerman, 2018; Amiti et al.,
2019; Muehlegger and Sweeney, 2022). Second, energy-intensive firms increased their prices
substantially more than other industrial firms, indicating that price setting constituted an
important margin of adjustment for them. By increasing output prices at rates higher than
other firms, they were able to accommodate higher energy costs, thereby reconciling their
near-zero demand elasticity with continued financial viability during the crisis.

4.d Input substitution among plants subject to EU ETS

Here we explore whether the decline in gas consumption during 2022h2 was partly offset
by increased reliance on other fossil fuels. While natural gas is typically the primary fossil
fuel consumed by EU ETS plants – serving as an essential input for 90% of these firms –
these plants also utilize solid fuels (e.g., coal) to a significant extent. The use of liquid (e.g.,
kerosene) or gas fuels (e.g., LPG) is much less common.
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Figure 4.4: Input substitution test among EU ETS plants

(a) Natural gas (b) Natural gas + other fossil fuels

(c) Other fossil gas fuels (d) Other liquid fossil fuels (e) Other solid fossil fuels

Note: The figures show average causal effects of the the expiration of a fixed-price contract on different outcomes
in levels. The outcome is reported underneath each event-study. Average causal effects are estimated on the
set of firms belonging to both the Invind and the EU ETS sample. Average causal effects before and after the
treatment are estimated in two separate regressions, using the “imputation” estimator by Borusyak et al. (2024).
Confidence intervals are at the 95% level.

Panel (a) of Figure 4.4 illustrates a negative effect on gas consumption over time, with no
evidence of a pre-trend (p-value: 0.47). The ATT estimates are -26 terajoules (Tj) in 2021 and
-89 Tj in 2022, corresponding to declines of -4% and -14%, respectively, relative to the 2018-
2020 average. We next examine total fossil energy consumption, defined as the combined use
of gas and other fuels. If firms completely substituted gas with other fuels, the ATT would
equal zero, while no substitution would produce effects equivalent to those for gas alone.
Panel (b) shows that point estimates fall between these two extremes, with ATT estimates
of +27 Tj in 2021 and -56 Tj in 2022. The event-study profile is similar but attenuated, with
wider confidence intervals. These findings indicate incomplete substitution, with treated
firms reducing total fossil energy consumption more than control firms.

Panels (c)-(e) of Figure 4.4 display changes in the consumption of single fuel types. Results
show slight increases in the use of all other fuels among treated firms, but substitution
remains incomplete. For gaseous fuels, the increase is negligible. For liquid fuels, the effects
are modest (6 Tj in 2021 and 10 Tj in 2022) and marginally insignificant at the 10% level. Solid
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fuels show a larger increase, but the effect arises earlier and is more pronounced in 2021
than in 2022, raising doubts about the validity of identifying assumptions for this particular
outcome (pre-trend test p-value: 0.02). While some substitution from gas to other fossil
fuels appears to have occurred, it is incomplete and does not fully explain the observed
reduction in gas consumption among EU ETS plants. This is consistent with gas-intensive
firms declaring that gas is an essential input.

5 Policy implications

We illustrate the implications of our results for the design of support measures to firms during
energy crises. EU governments widely implemented such policies in 2021-22 (Sgaravatti
et al., 2021; McWilliams et al., 2024), although some economists have raised concerns about
their potential impact on incentives to conserve gas (Gros, 2022; Signorini, 2022). Following
Deryugina et al. (2020), we provide calculations calibrated to Italy in 2022h2. Assuming
a perfectly competitive market for industrial gas, the introduction of a per-unit subsidy B

increases equilibrium quantity according to:

%&

%B
=

&(&�
&( + &�

&

%
=

1
1/&( + 1/&�

&

%
. (5)

where &� and &( are the absolute demand and supply elasticities and & and % are the initial
quantity and price.

Gas supply is highly inelastic in the short term, but precise estimates are scarce. We consider
two scenarios: a very low supply elasticity (&( = 0.06; Krichene (2002); Albrizio et al. (2022)),
and a moderately higher value (&( = 0.2). Figure 5.1 illustrates the percentage increase in
gas consumption for both scenarios, as a function of demand elasticity.

Energy-intensive firms are the most exposed to the crisis, and policymakers may support
them for several reasons, such as mitigating strategic dependencies in a challenging geopolit-
ical environment (Draghi, 2024). Our estimates indicate that a 50-cent subsidy (equivalent to
40% of the observed price) for gas-intensive firms (&� = 0.03) would increase their consump-
tion by approximately 1.5% in 2022h2, with little variation across supply elasticity scenarios.
Since this group accounts for 80% of total industrial gas consumption, this translates to an
increase of around 80 million Standard Cubic Meters (SMC).

If subsidies are targeted non-gas-intensive firms instead (&� = 1.3), the same 50-cent subsidy
would raise consumption by 4 to 12.5%, depending on the supply elasticity. Given this
group represents 20% of industrial gas consumption, this corresponds to an absolute increase
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between 54 and 167 million SMC.

Figure 5.1: Effect of a subsidy on equilibrium gas consumption

Note: The figure shows the percentage increase in the equilibrium quantity of gas purchases induced by a 50
cent subsidy for different values of demand and supply elasticities. It is calculated according to the formula
in (5) and scaled by the baseline quantity; & is set equal to 6,700 million SCM (average in second semester
2015-19; source: SNAM - network operator) and % to 1.35 euro per SCM (retail price in business sector in
2002h2; source: Eurostat). Vertical dotted lines are drawn in correspondence of some values of the elasticity of
demand estimated in the paper: 0.03 (gaas-intensive firms), 1.1 (average) and 1.3 (non gas-intensive firms).

In this context, our results allow a quantification of the unintended consequences of these
policies in terms of additional demand. Crucially, extending subsidies to all firms, even
those least exposed to the crisis, could triple gas consumption due to their higher demand
elasticity.

For electricity, the demand elasticity is near zero, implying that subsidies for electricity would
not exacerbate the energy crisis further.

6 Conclusions

This study examines how Italian industrial firms responded to the 2021-2022 energy crisis,
using the staggered expiration of fixed-price energy contracts to identify the impact of rising
energy costs. We find that electricity prices increased by up to 45% and gas prices by 30%,
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with limited adjustments in energy demand. Gas consumption decreased only in late 2022,
while electricity usage remained unchanged.

Responses varied significantly across firms. Gas-intensive firms exhibited minimal elasticity,
reflecting their reliance on natural gas as an essential input. In contrast, non-gas-intensive
firms showed greater reductions in gas usage and higher price sensitivity.

These findings suggest that public support to firms during the crisis, while providing finan-
cial relief, have reduced incentives for conservation, but less so among gas-intensive firms
with inelastic demand.
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Appendices

Appendix A Background

A.a The 2021-22 energy crisis in Italy

In 2020, one year before the beginning of the energy crisis, Italy was a net importer of natural
gas: imports accounted for 93% of gross inland consumption. Of these imports, Russia
accounted for 43%, making it a key supplier. Italy was also a net importer of electricity,
and natural gas accounted for approximately half of domestic power generation. The high
reliance on natural gas in electricity production coupled with the marginal price system at
work in the day-ahead power market implies that shocks to the wholesale price of natural
gas almost completely pass-through to the wholesale price of electricity. Figure A.1 plots the
evolution of the wholesale price of natural gas (solid red line) and electricity (dashed black
line) in Italy.16 The price of gas was rather stable at low levels until mid-2021 (around 30 euro
per MWh). After that, it slowly started to rise above historical levels. The first major upswing
occurred in the fall of 2021, when the price went above 100 euros per MWh; the second took
place in December of the same year, when it almost reached 200 euros. After a temporary
drop, the price surged to around 250 in February when Russia invaded Ukraine, but rapidly
declined thereafter and stabilized below 100 until summer 2022. At that point, the price
climbed again quite rapidly, reaching a historic peak of over 300 euros in late August 2022.
Before the end of the year, the price dropped to much lower levels and then up again, before
a final descent to 70.

A.b The Italian retail energy market

Following a broader trend in the European Union, the Italian retail markets for electricity
and natural gas have been gradually liberalized in the late 1990s (Polo and Scarpa, 2003).
According to the Regulatory Authority for Energy, Networks and Environment (ARERA),
both the market for electricity and for gas are not very concentrated (ARERA, 2022).17

The contracts offered in the liberalized market are highly heterogeneous and customizable
in terms of conditions and prices, but can be broadly split between fixed-price and variable-

16The two time series of gas and electricity prices are indeed highly correlated (98% at the daily frequency).
In levels, the price of gas is lower than electricity because gas is an input in the production function of power.

17Households and very small businesses – outside the scope of our analysis – can still participate in a
“protected” market (mercato tutelato), where ARERA periodically sets a controlled price. As of 2024, the
transition to a fully liberalized market and the elimination of the “protected” market are almost complete but
still ongoing.
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Figure A.1: Wholesale gas and electricity price at the daily frequency

Source: Italian Power Exchange (GME). Note: The figure shows the spot price of natural gas and electricity
traded on the Italian day-ahead wholesale market.

price contracts. Fixed-price contracts typically have a standard duration of 12, 24, or –less
frequently– 36 months. Each supplier can offer as many contracts as it sees fit. However,
for households and firms with a low-voltage connection for electricity (a minority in our
sample) and an annual gas consumption below 200,000 standard cubic meters (one third
of our sample), the supplier is required to also offer two standardized contracts - one with
variable and one with fixed price. While the conditions for these standardized contracts are
designed by ARERA, suppliers compete on price.18 All the contracts posted on the market,
whether standardized or not, are published daily on a website managed by a government
agency.19 The portal does not include information on large and/or energy-intensive firms,
which usually negotiate ad hoc contracts directly with their supplier.

A.c Additional information on the retail energy markets

Electricity In 2021, all firms with more than 50 employees, that is those analyzed in this
paper, had to purchase electricity in the liberalized market. Most likely a minority of firms
in our sample have a low-voltage connection and thus must be offered the standardized
contracts designed by the authority. According to ARERA, in 2021 45% of all business
customers were on a fixed-price contract, while the rest were on a variable price-contract,
linked to the fluctuation of the wholesale price or of other price indexes. On average in
2021 the unit cost for energy for outstanding (both newly signed and signed in previous
years) fixed-price contracts was 30% lower than those on a variable price contract. In 2022,

18Standardized contracts should allow unsophisticated customers to easily compare prices across sellers.
19https://www.ilportaleofferte.it/portaleOfferte/.
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the proportion of business customers on fixed-price contracts remained largely unchanged
(47%); in that year, they enjoyed a 80% lower unit cost compared to variable-price contracts,
which were completely exposed to the increase in wholesale prices (ARERA, 2023). Notice
that fixed-price contracts were continuously supplied by some retailers throughout the crisis,
at least for low-voltage connection (for which ARERA publishes data). However, fixed-
price contracts on sale became rarer, and, of course, more expensive during the crisis. The
average unit cost for outstanding (both newly signed and signed in previous years) fixed-
price contracts (both standardized and not) increased from an average of 91 euro/MWh in
2021 to 171 the next year.

Natural gas All firms must purchase natural gas on the free market; those with an annual
consumption below 200,000 standard cubic meters - approximately 33% in our sample -
must be offered the standardized contracts. In 2021, business customers were almost evenly
split between those on a fixed-price contract (44%) and those on a variable price contract
(56%) (ARERA, 2022). On average the unitary cost of energy was 30% higher in the latter
case relative to the former; the difference is driven by the increase in wholesale price that
materialized over the second semester. In 2022, the share of business customers on a variable
contract increased to 63% (ARERA, 2023). The cost spread between the two types of contracts
increased to 50%, due to the further stark increase in the wholesale price. In the case of natural
gas, the number of new fixed-price contracts for sale on the free market dropped to less than
5 in the first semester of 2022, and to zero in the second. However, firms with an annual
consumption below 200,000 standard cubic meters could still purchase one of the fixed-price
standardized contracts. The average unitary cost for outstanding (both newly signed and
signed in previous years) fixed-price (both standardized and not) contracts increased from
an average of 34 cents/cubic meter in 2021 to 77 the next year, driven my new more expensive
contracts.
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Appendix B Questionnaires
This section reports survey questions exactly as they appeared to firms. The English trans-
lation is carried out by the Bank of Italy.

Figure B.1: Survey questions for the energy section

(a) 2021 wave

(b) 2022 wave

Note: The figures displays the original questionnaires of the energy section of the Invind survey, for the 2021 and 2022 wave.
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Appendix C Validation of survey answers

In this Appendix we detail the validation procedure implemented to check the quality of the
Invind survey data. Considering that respondents might not be familiar with physical units
of measurement, we verify whether quantities and costs of gas and electricity take plausible
values. To this end, we implement the following algorithm.

1. First, we exclude from our sample firms that did not reply to all the energy-related
questions. Note that consumed quantities must be strictly positive to be able to compute
a valid retail price of energy inputs.

2. Second, we rely on two benchmarks to cross-check the plausibility of the Invind replies,
separately for electricity and natural gas.

(a) We compute the average unitary price paid by firms for each semester and com-
pare it with the corresponding average price recorded by Eurostat for the Italian
market.20 We flag observations for which the unit price – computed by dividing
expenditures by quantity – is either below half the minimum or above double the
maximum of the reference Eurostat price across consumption classes.21

(b) We examine the ratio between energy costs and turnover. We flag observations
above and below the 99th and 1st percentile of the distribution. These correspond
to cost-turnover ratios above 50% and below 0.1%, respectively.

3. Combining the criteria in a) and b), we identify 6 error categories for the firm-level
replies on electricity and 4 categories for the ones on natural gas. For example, one
category is made by those firms that incorrectly report electricity consumption in
KWh, instead of MWh; this mistake results in a price (expenditures for electricity over
quantity of electricity) which is approximately 1000 times lower than what reported
by Eurostat. In Table C.1 we list all the different categories, specifying the reporting
mistakes associated with each of them. This exercise is performed for both semesters
separately. In 18.7 and 2.8% of the electricity-related replies and 21 and 6.4% of the
gas-related replies in the 2021 and 2022 wave respectively, we observe the same mistake
done in both semesters. In these cases, we rescale the values in order to fix the reporting
mistake. Carrying on with the previous example, if we believe a firm reports quantities

20The Invind and the Eurostat prices are constructed similarly, as they both include levies and taxes. However,
Eurostat includes all non-household consumers, while we only have industrial firms with at least 50 employees.

21In light of the upward trend in prices over time, While the parameter of the maximum price is semester-
specific, the lower-bound of the price distribution is considered constant over time and equal to half the
minimum price reported by Eurostat in the first semester of 2021.
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in KWh instead of MWh, we divide it by 1000 to convert it back into MWh, and then we
calculate the price again. In the final estimation samples, we only include those firms
whose answers are consistent with both the a) and b) criteria in all 4 semesters, be it
before or after our rescaling.

4. For the subset of energy-intensive firms, we examine differences between input quanti-
ties declared in the survey against administrative microdata collected by CSEA. When-
ever the gap is larger than 35% for at least one semester, we conservatively drop the
firm from the estimation sample. Figure C.1 plots the values from the administrative
source against the value from the Invind survey; for the latter, we flag in blue those
observations that needed rescaling according to the previous steps. The results are
reassuring for both the rescaled observations (in blue) and for those that we left un-
changed (in red), as they both lie very close to the 45-degree line. This suggests that
our survey data match administrative records and that our correction algorithm works
well.

5. As for natural gas quantities, we can perform a further check using firms with plants
subject to the EU ETS, for which we observe confidential administrative records from
ISPRA. The EU ETS is a plant-level regulation. Thus a multi-plant firm could have a
plant subject to the EU ETS, and others not subject to it. As a consequence, we exclude
firms for which quantities reported in the survey are smaller than the corresponding
EU ETS record; instead, we keep firms reporting larger values than the corresponding
EU ETS record. Overall, only 2.8% (4.5%) of the electricity sample and 2.1% (2.5%) of
the natural gas sample in 2021 (in 2022) display differences larger than 35% in absolute
value between survey and administrative records. We drop these observations.
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Table C.1: Validation of data quality: units of measurement in quantities and expenditure

(1) (2) (3) (4) (5) (6)
Cost-share criterion Price-range criterion Expenditure Quantity Prevalence

2021 2022

Panel A: Natural gas

3 3 000 e SCM 70% 90%
7 - upper tail 7 - higher price (000-fold) e SCM 3% 0%
3 7 - higher price (000-fold) 000 e 000 SCM 18% 4.9%
3 7 - higher price (million-fold) 000 e million SCM 0% 0.7%
7 - lower tail 7 - lower price Million e ’000 SCM 0% 0.8%

Residual observations (dropped) 9% 3.6%
Total 100% 100%

Panel B: Electricity

3 3 000 e Mwh 71.7% 94.2%
3 7 - lower price 000 e Kwh 14.3% 1.9%
7 7 - higher price e Mwh 2.7% 0.1%
7 3 e Kwh 2.3% 0.1%
3 7 - higher price 000 e Gwh 0% 0.7%
7 - lower tail 3 Million e Gwh 0% 0.3%
7 - lower tail 7 - lower price Million e Mwh 0.1% 0%
7 - lower tail 7 - lower price Million e Twh 0.1% 0%

Residual observations (dropped) 7% 2.8%
Total 100% 100%

Note: The table presents results from the data validation procedure, separately for gas (Panel A) and electricity (Panel B). Depending on
whether unitary prices satisfy two reference criteria (Column 1 and 2), observations are sorted into mutually exclusive compilation mistakes.
Specifically, these two checks allow us to determine the units of measurement used by the respondent (Column 3 and 4) compatible with
the mistake category. This exercise is performed for both semesters. In case we observe a consistent mistake across semesters, we rescale
the values with the goal of harmonising all observations in terms of thousands of euro for expenditure, and MWh and SCM for purchased
quantities of electricity and natural gas, respectively. We operate this correction in 18.7 and 2.8% of the electricity-related replies and 21
and 6.4% of the gas-related replies in the 2021 and 2022 wave, respectively (Column 5 and 6). The distributions are unweighted.
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Figure C.1: Consistency with other data sources

(a) Electricity consumption in 2021 (b) Natural gas consumption in 2021

(c) Electricity consumption in 2022 (d) Natural gas consumption in 2022

(e) Gas consumption in 2021 (f) Gas consumption in 2022

Note: The figures show the consistency between data sourced via the Invind survey and quantities of electricity and natural gas recorded
in administrative data for a sub-sample of firms belonging to the energivore and gasivore lists (panel (a) and (b) for 2021, and panel (c) and
(d) for 2022) and to the EU ETS (panel (e) and (f)).
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Appendix D Non-response bias

Each Invind wave related to firms with 50+ employees has approximately 1800 respondents.
Response rates to these energy sections is around 50% in both waves, though we drop a
small number of observations as detailed in the previous section. Finally, we lose additional
observations (approximately 23%) as we only include firms that answered the energy section
in both waves.

In this section we examine the robustness of our findings to selective item non-response using
“inverse probability weighting” (Wooldridge et al., 2002; Stantcheva, 2022). This method is
commonly used to address differential attrition by utilizing the relationships among observed
covariates and response rates to re-weight the observed data in a way that approximates the
distribution in the full data set (Stantcheva, 2022; Glynn and Quinn, 2010). In practice, we run
our baseline specification weighting observations by the inverse of the probability of being
part of the respective estimation sample. The latter probability is obtained as the propensity
score from estimating by logit equations 6 and 7, where -8 include covariates measured at
baseline for all observations and the dependent variable is equal to one for firms belonging to
the estimation sample, and zero for other firms surveyed in Invind, including firms dropped
due to energy variable misreporting (see previous sections of this Appendix).22

1(Electricity sample8) = -′
8�

4 + �8 (6)

1(Gas sample8) = -′
8�

6 + �8 (7)

Figure D.1 indicates the support of the propensity score overlaps between out of sample
and in sample observations, for both electricity and gas. We test and verify the balancing
of covariates within bins (or “blocks”) of the propensity score following Becker and Ichino
(2002).

In Figure D.2, we compare our baseline results with those obtained by rerunning the same
specification with inverse probability weighting. The two sets of results are remarkably
similar, mitigating concerns about item non response biasing our results.

22We include total sales, total investment, dummies for size class, sector dummies, macroregion dummies,
a dummy for being in the EU ETS, a dummy for being an electricity intensive firm, a dummy for being a gas
intensive firm
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Figure D.1: Common support of propensity score

(a) Natural gas sample (b) Electricity sample

Note: The figures show the distribution of the propensity score of out of sample and in sample observations.

Figure D.2: Inverse-probability-weighted estimates

(a) Price of natural gas (b) Price of electricity

(c) Gas demand (d) Electricity demand

Note: The figures show average causal effects of the expiration of a fixed-price contract on the average costs of electricity and natural gas
(panels (a) and (b)) and the corresponding demanded quantities (panels (c) and (d)). The charts compare our baseline results (in black)
with those obtained by rerunning the same specification with inverse-probability weighting (Wooldridge et al., 2002; Stantcheva, 2022).
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Appendix E Summary statistics

In Table E.1, we present summary statistics for our energy demand estimation samples: an
electricity sample and a natural gas sample. Firm characteristics are measured prior to the
crisis, specifically in the first half of 2021. The sample comprises industrial firms with at least
50 employees, as determined by the Invind sampling design. All statistics are weighted by
survey weights, and the number of observations can be obtained by multiplying the number
of firms by four (representing four semesters).

The electricity and natural gas samples share similar characteristics. Over half of the firms
belong to the metalworking industry, while the remainder are distributed relatively evenly
across other sectors, except for non-metallic minerals and water & waste, which are minor
categories. Geographically, more than 80% of firms are located in Northern Italy, with only
57% based in the South or Islands.

On average, firms in the electricity sample pay 0.16 per kWh and consume approximately
6,000 MWh of electricity per semester. For natural gas, the average price is 10 per GJ, with a
typical consumption of 63 million standard cubic meters. About one-third of firms in both
samples are either elettrivore (electricity-intensive) or gasivore (gas-intensive) firms, while
around 5% operate plants subject to the EU ETS. Additionally, about half of the firms in the
natural gas sample consider gas to be an “essential” input for production.

Treatment cohorts are unevenly distributed. Only 14% (electricity sample) and 18% (gas
sample) belong to the pure control group. The largest cohorts are the early treated (exposed
in 2021h2) and mid treated (exposed in 2022h1), while the late treated (exposed in 2022h2)
form a small minority (1% and 3%, respectively).

Finally, the sample firms are relatively large, with average annual revenues of 8090 million
and over 200 employees, though these distributions are highly skewed.

Tables E.2 and E.3 report summary statistics and balancing tests for baseline covariates
across the four treatment cohorts, separately for the electricity and gas samples. Each table
presents cohort-specific means and standard errors for sector dummies and energy-related
firm characteristics, along with p-values from pairwise and joint orthogonality tests.

In both samples, there are statistically significant differences in some covariates across co-
horts. For instance, in the electricity sample (Table E.2), the proportion of firms in the
Food sector is significantly higher among late-treated firms than among pure controls (p-
value < 0.01), and joint orthogonality tests reject balance at conventional significance levels
for several sector variables. Similar patterns emerge in the gas sample (Table E.3), where
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treatment groups differ notably in their likelihood of being gas-dependent or classified as
energy-intensive.

Despite these statistical differences, most of the covariate imbalances are small in magnitude.
Differences in means are typically within a few percentage points across groups. This sug-
gests that, while the null hypothesis of perfect balance is sometimes rejected, the economic
significance of these differences is limited. Taken together, these results support the plau-
sibility of the identification strategy and suggest that the estimation of treatment effects is
unlikely to be driven by stark differences in pre-treatment characteristics.

To further mitigate concerns about residual imbalance, in Appendix F we probe robustness by
allowing for flexible differential trends, by interacting time fixed effects with sector dummies
and energy-intensity indicators. These non-parametric specifications absorb sector-specific
and energy-dependence-specific dynamics over time. Reassuringly, results are virtually
identical to the baseline estimates, with point estimates remaining effectively unchanged.
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Table E.1: Summary statistics for the electricity and gas samples

(1) (2)
Variables mean mean
Sectoral composition

Food and beverages 8% 6%
Textiles & apparel 13% 11%
Chem, pharma, rubber 12% 15%
Non-metallic minerals 4% 4%
Metalworking industry 51% 51%
Wood, paper, furniture 10% 11%
Water & waste 3% 3%

Macroarea
North-West 40% 43%
North-East 39% 40%
Center 14% 13%
South or Islands 7% 5%

Energy-related variables
Price of electricity (euro/KWh) 0,16
Price of natural gas (euro/GJ) 10,41
Quantity of electricity (GWh) 6,161
Quantity of natural gas (mil. smc) 63,406
Energy-intensive firm (0/1) 30% 29%
Subject to the EU-ETS 4% 5%
Gas is an indispensable input* (0/1) 54%

Cohorts of treatment
Pure control 18% 14%
Early treated 44% 45%
Mid treated 35% 40%
Late treated 3% 1%

Other firm-level information
Sales (million euro) 86,26 97,76
Labour force 204,2 224,9

Number of observations 413 308

Electricity sample Gas sample

Note: Invind data. The table reports summary statistics for the energy demand analyses used in Section
4. Characteristics are measured in the first semester of 2021, at baseline (thus the number of observations
corresponds to the number of firms). *The variable “Gas is an essential input” is taken from the Business
Outlook survey of the Bank of Italy and it refers to the beginning of 2022.
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Table E.2: Summary statistics and p-values comparing treatment groups. Electricity sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Early treated Mid treated Late treated Pure control (1) vs (2) p-val (1) vs (3) p-val (1) vs (4) p-val (2) vs (3) p-val (2) vs (4) p-val (3) vs (4) p-val Joint orthogonality
test p-val

Food and beverages 0.080 0.127 0.182 0.158 0.005 0.019 0.000 0.295 0.198 0.688 0.001
(0.010) (0.014) (0.059) (0.021)

Textiles & apparel 0.074 0.107 0.000 0.118 0.038 0.062 0.021 0.022 0.595 0.016 0.010
(0.010) (0.013) (0.000) (0.019)

Chem., pharma., rubber 0.136 0.153 0.182 0.171 0.385 0.399 0.154 0.615 0.492 0.860 0.479
(0.013) (0.015) (0.059) (0.022)

Non-metallic minerals 0.034 0.073 0.091 0.039 0.001 0.054 0.673 0.669 0.046 0.129 0.005
(0.007) (0.011) (0.044) (0.011)

Metalworking industry 0.523 0.400 0.364 0.461 0.000 0.041 0.070 0.635 0.082 0.228 0.000
(0.019) (0.020) (0.073) (0.029)

Wood, paper, furniture 0.108 0.113 0.182 0.026 0.758 0.133 0.000 0.175 0.000 0.000 0.000
(0.012) (0.013) (0.059) (0.009)

Water & waste 0.045 0.027 0.000 0.026 0.073 0.149 0.153 0.273 0.975 0.278 0.116
(0.008) (0.007) (0.000) (0.009)

ETS coverage 0.074 0.067 0.182 0.092 0.613 0.010 0.326 0.005 0.171 0.068 0.033
(0.010) (0.010) (0.059) (0.017)

Energy-intensive firm 0.284 0.340 0.455 0.355 0.030 0.016 0.024 0.124 0.649 0.203 0.014
(0.017) (0.019) (0.076) (0.027)

Gas essential input 0.503 0.553 0.636 0.603 0.080 0.087 0.005 0.285 0.174 0.675 0.019
(0.019) (0.021) (0.073) (0.030)

Labour force (yearly avg) 332.227 304.427 452.091 1034.829 0.346 0.166 0.000 0.081 0.000 0.364 0.000
(20.352) (21.236) (115.903) (242.808)

Sales (million euro) 158.528 121.912 166.633 588.517 0.064 0.902 0.000 0.245 0.000 0.279 0.000
(16.177) (9.888) (44.005) (147.681)

Notes: Table reports means and standard errors (in parentheses) by treatment cohort. Columns (5)(11) report p-values from pairwise
orthogonality tests. Column (12) reports p-values from joint F-tests across treatment arms.
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Table E.3: Summary statistics and p-values comparing treatment groups. Gas sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Early treated Mid treated Late treated Pure control (1) vs (2) p-val (1) vs (3) p-val (1) vs (4) p-val (2) vs (3) p-val (2) vs (4) p-val (3) vs (4) p-val Joint orthogonality
test p-val

Food and beverages 0.055 0.105 0.143 0.163 0.003 0.054 0.000 0.527 0.034 0.784 0.000
(0.010) (0.014) (0.067) (0.026)

Textiles & apparel 0.102 0.073 0.000 0.102 0.103 0.076 0.985 0.140 0.201 0.077 0.120
(0.013) (0.012) (0.000) (0.022)

Chem., pharma., rubber 0.133 0.194 0.286 0.184 0.009 0.023 0.087 0.235 0.766 0.205 0.019
(0.015) (0.018) (0.087) (0.028)

Non-metallic minerals 0.031 0.040 0.143 0.082 0.438 0.002 0.004 0.012 0.027 0.290 0.002
(0.008) (0.009) (0.067) (0.020)

Metalworking industry 0.516 0.468 0.429 0.367 0.129 0.370 0.000 0.687 0.016 0.533 0.005
(0.022) (0.022) (0.095) (0.035)

Wood, paper, furniture 0.141 0.089 0.000 0.082 0.010 0.033 0.033 0.100 0.766 0.118 0.006
(0.015) (0.013) (0.000) (0.020)

Water & waste 0.023 0.032 0.000 0.020 0.395 0.414 0.809 0.335 0.403 0.448 0.596
(0.007) (0.008) (0.000) (0.010)

ETS coverage 0.109 0.056 0.143 0.204 0.002 0.584 0.001 0.063 0.000 0.448 0.000
(0.014) (0.010) (0.067) (0.029)

Energy-intensive firm 0.281 0.282 0.714 0.429 0.972 0.000 0.000 0.000 0.000 0.004 0.000
(0.020) (0.020) (0.087) (0.035)

Gas essential input 0.582 0.526 1.000 0.860 0.082 0.000 0.000 0.000 0.000 0.051 0.000
(0.022) (0.023) (0.000) (0.026)

Labour force (yearly avg) 337.164 332.331 605.000 1476.000 0.869 0.003 0.000 0.004 0.000 0.383 0.000
(20.203) (21.251) (114.776) (375.847)

Sales (million euro) 159.749 133.354 647.554 801.606 0.155 0.000 0.000 0.000 0.000 0.799 0.000
(14.654) (11.225) (226.028) (225.875)

Notes: Table reports means and standard errors (in parentheses) by treatment cohort. Columns (5)(11) report p-values from pairwise
orthogonality tests. Column (12) reports p-values from joint F-tests across treatment arms.
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Appendix F Additional robustness tests

As a robustness check, we extend the baseline specification by allowing for flexible, non-
parametric differential trends across firm types. Specifically, we modify the first-stage re-
gression of the Borusyak et al. (2024) estimator to include a full set of interactions between
time fixed effects and sector dummies, as well as between time fixed effects and indicators
for energy-intensive status. This approach allows each sector and energy-intensive firms to
follow their own arbitrary evolution over time, mitigating concerns that treatment timing
may be correlated with unobserved group-specific dynamics.

Figure F.1 displays the results, together with estimates from our baseline specification. The
resulting estimates are virtually unchanged relative to the baseline, both in magnitude and
statistical significance. The robustness of the point estimates to the inclusion of these highly
flexible controls provides further confidence that our results are not driven by differential
sectoral or energy-intensity-specific trajectories unrelated to treatment.
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Figure F.1: Robustness to sector-specific and energy-intensive-specific trends

Notes: The figures show average causal effects of the expiration of a fixed-price contract on the average
retail prices of electricity and natural gas (panels (a) and (b)) and the corresponding demanded quantities
(panels (c) and (d)). Outcome variables are always in logs. Average causal effects before and after the
treatment are estimated in two separate regressions, using the “imputation” estimator by Borusyak et al.
(2024), as described in Section 3. Blue dots indicate our baseline estimation, identical to the one reported
in the main text. Green diamonds include the interaction between calendar time fixed effects and 11 sector
dummies. Red triangles include the interaction between calendar time fixed effects and an energy-intensive
firm dummy. Confidence intervals are at the 95% level.
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Appendix G Additional results

Figure A.1: Baseline results with different diff-in-diff estimators

(a) Average cost of electricity (b) Average cost of natural gas

(c) Quantity of electricity (d) Quantity of natural gas

Note: The figures show average causal effects of the end of price protection on the average costs of electricity
and natural gas (panels (a) and (b)) and the corresponding demanded quantities (panels (c) and (d)). Each color
corresponds to a different estimation procedure. Standard errors are clustered at the firm level. Confidence
intervals are at the 95% level.
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Figure A.2: Natural gas: heterogeneous effects by cohort

(a) Average cost

(b) Quantity

Note: the estimates in the upper and lower panel are from the same regression as in panel (b) and (d) of Figure
4.1 respectively; here they are reported by each cohort separately. Confidence intervals at the 95% level.
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Figure A.3: Output price growth across cohorts of treatment

(a) Energy-intensive firms in electricity sample (b) Other firms in electricity sample

(c) Energy-intensive firms in gas sample (d) Other firms in gas sample

Note: The figures show averages of yearly growth rate in the prices of goods sold from the Invind survey across
the different treatment cohorts, separately for electricity and gas samples, and for energy-intensive and other
firms. Averages are weighted by survey weights
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Appendix H Background pictures

Figure A.1: Expectations on wholesale gas price (TTF) implied by futures

Note:The figure shows futures curve for the Title Transfer Facility (TTF) price at three different points in time:
September 2021 (in blue), March 2022 (in red) and September 2022 (in green). The first point of each line is the
spot price at that date.
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Figure A.2: Expectations on the economic situation

Note:The figure shows the difference between the share of manufacturing firms expecting positive economic
situation in the next 3 months and those expecting a negative economic situation. The question refers to the
general economic situation of the country. The vertical line refers to March 2022, the first month after Russia
invaded Ukraine. Source: Istat.

Figure A.3: Fossil fuel energy mix for firms in the matched EU ETS - Invind sample

Note: The figure displays the average consumption of different fossil fuels (measured in Terajoules, TJ) for firms
belonging to the matched Invind-EU ETS sample.
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Appendix I A simple static input choice model

Here we present a simple static model of input choice, following the treatment in Cahuc et al.
(2014) to show that whether demand for gas is more or less elastic relative to other firms
is theoretically ambiguous. Consider a firm that operates with a homogeneous production
function that combines natural gas and a bundle of other inputs. Assume the production
function is homogeneous of degree � and that the firm faces an iso-elastic downward sloping
demand. It can be shown that the uncompensated own-price elasticity of demand for natural
gas (the parameter estimated in our paper) can be written as:

��?� = −(1 − B)� −
�

� − �
B, (8)

where B is the share of gas expenditures in total costs, � is the elasticity of substitution
between natural gas and other inputs, � is the markup. The first term is the substitution
effect (holding output fixed) and the second term the scale effect, both working in the same
direction. For energy-intensive firms, the scale effect is more relevant; for other firms, the
substitution effect is more relevant.

According to our surveys, almost all gas-intensive firms declare gas to be an essential input,
while the share is lower among remaining firms. We can thus assume that � is heterogeneous
in energy-intensity. In particular, let us assume that � = 0 among gas-intensive firms, and
� > 0 for other firms. Under this assumption, the demand elasticity for the two groups reads:

��?� =

− �
�−� B

�� , if � = 0, energy intensive (EI),

−(1 − B#��)� − �
�−� B

#�� , if � > 0, non energy intensive (NEI),
(9)

where B�� > B#�� by definition. The demand for gas among gas intensive firms is less elastic
relative to that of other companies if the elasticity of substitution among the latter group is
sufficiently high:

� >
�

� − �

(B�� − B#��)
1 − B#��

. (10)

Appendix J Effect heterogeneity with machine learning

In order to study heterogeneity in treatment effect of fixed-price contract expiration on gas
consumption in the second semester of 2022, we use random forests in the spirit of Athey
and Imbens (2016) and Wager and Athey (2018). First, we split the treated observations

23



in two random sub-samples: a learn sub-sample (60 per cent of the overall sample) and a
test sub-sample (40 per cent). Second, we build a forest of 5,000 trees using the learn sub-
sample only. Each tree can pick only a random half of the considered covariates, which are:
a (self-reported) dummy for whether gas is an essential input in production23, which can
be thought as a proxy of low elasticity of substitution between gas and other inputs; a gas
intensive dummy24; sector dummies; an EU ETS dummy; and employment in 2021. Third,
we use the forest to predict treatment effects out-of-sample in the test sample. Finally, we
test whether machine learning (ML) predictions carry over to the test sample. The sample
splitting approach ensures that overfitting does not drive our results.

Figure A.1 plots the distribution of individual treatment effects as estimated by the Borusyak
et al. (2024) imputation method (in blue), as predicted by ML in sample (black) and out of
sample (red). The point estimate is always very close to -0.45 across the three distributions.25
The blue distribution is very dispersed. However note that this variation could be due to
treatment effect heterogeneity (along observables or unobservables) or due to noise (Borusyak
et al., 2024), as individual treatment effects contain the error term &8 9C in equation 4. The
distribution of in-sample-ML-predicted treatment effects (in black) is much less dispersed,
but still displaying economically relevant heterogeneity and including values around zero
for some observations.26 The distribution of out-of-sample-ML-predicted treatment effects
(in red) is similar to the black one, but even more compressed, with the difference plausibly
due to overfitting in the in-sample predictions. Still, the red distribution has a support going
from -1 to zero. This means that the forest predicts that some treated firms would decrease
gas consumption by as much as 60%, while others would not change it at all.

In order to understand which observables predict heterogeneity in treatment effects, and
in which direction, we first regress the in-sample-ML-predicted treatment effect on each
covariate separately (see Table A.1). The forest predicts that firms having lower-than-average
treatment effects (i.e. a small gas demand reduction) are concentrated: in the food sector;
in the chemicals-pharmaceutical-rubber sector; firms declaring natural gas to be an essential

23The yes/no question comes from a different Bank of Italy survey (Business Outlook Survey of Industrial and
Service Firms, Sondtel) run in fall 2022 and reads: ”At the beginning of 2022, was gas an essential input for your
firms manufacturing process?". Essential inputs are defined as follows: Inputs are essential when given the
plants and machinery installed and used in the manufacturing process the total or partial lack thereof would
make it impossible to produce the good in the short term.

24The dummy is based on the official definition by the Italian legislation. Gas intensive firms must have
annual consumption above 1 GWh, belong to certain industrial sectors, and have gas intensity (measured as
expenditure for gas natural on sales and/or value added) above certain thresholds.

25Note that here we refer to the point estimates, and not their exponential transformation that we comment
in most of the paper.

26This suggests that the extreme values in the blue distribution are probably due to noise, although we cannot
rule out that they are due to treatment effect heterogeneity along unobservables.
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Figure A.1: Distribution of treatment effects on gas demand in 2022h2

Note: The figure shows the distribution of individual treatment effects in 2022h2. The outcome is natural gas
consumption.

input; those subject to the EU ETS; the gas intensive ones according to the Italian state aid
regulation. Firms having higher-than-average treatment effects (i.e. a large gas demand
reductions) are those in the wood and paper industry. The results are confirmed in the
test sample when using as an outcome variable the out-of-sample-ML-predicted treatment
effects (Table A.2). In order to test whether these results represent true heterogeneity and
not a statistical fluke due to overfitting, we estimate the same regressions in the test sub-
sample using as an outcome variable the estimates of the treatment effect obtained with the
Borusyak et al. (2024) method. If treatment effect heterogeneity is real, we would expect to
see the same signs and similar coefficients in these data, because the Borusyak et al. (2024)
estimates in the test sample were never used to train the forest. Results are presented in
Table A.2. For some covariates, signs are different and/or coefficients are greatly attenuated,
but some of the predictions are confirmed out-of-sample, both in terms of sign and size of
the coefficients. In particular, four (non mutually exclusive) groups of observations display
lower gas adjustment than the average: firms in the food industry, firms declaring that gas
is an essential input, firms in the EU ETS, and gas intensive firms. We take this as evidence
that treatment effect heterogeneity exists in this context along these covariates.
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Table A.1: Characterizing in-sample predictions of treatment effect heterogeneity

in-sample ML predictions of treatment effects
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Food (0/1) 0.384∗∗∗
(0.03)

Textiles appareal (0/1) -0.0847
(0.06)

Chem., pharma., rubber (0/1) 0.0953∗∗
(0.04)

Non-metallic minerals (0/1) -0.0825
(0.14)

Metalworking (0/1) -0.0324
(0.04)

Wood, paper, furniture (0/1) -0.195∗∗∗
(0.06)

Water, waste (0/1) -0.109
(0.12)

Nat. gas indispensable (0/1) 0.157∗∗∗
(0.04)

Employment (heads) -0.0000121
(0.00)

EU ETS (0/1) 0.135∗∗∗
(0.05)

Gas intensive (0/1) 0.169∗∗∗
(0.04)

R2 0.21 0.01 0.02 0.00 0.00 0.08 0.01 0.11 0.00 0.03 0.04
N 144 144 144 144 144 144 144 144 144 144 144

Note: OLS regressions in the learn sub-sample. The outcome variable is the treatment effect (on gas consumption
in 2022h2) as predicted by ML. Standard errors in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01.
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Table A.2: Characterizing out-of-sample predictions of treatment effect heterogeneity

out-of-sample ML predictions of treatment effects
(1) (2) (3) (4) (5) (6)

Food (0/1) 0.307∗∗∗
(0.04)

Chem., pharma., rubber (0/1) 0.0916∗
(0.05)

Wood, paper, furniture (0/1) -0.205∗∗∗
(0.06)

Nat. gas indispensable (0/1) 0.153∗∗∗
(0.04)

EU ETS (0/1) 0.126∗∗∗
(0.03)

Gas intensive (0/1) 0.141∗∗∗
(0.04)

R2 0.16 0.03 0.08 0.12 0.02 0.03
N 107 107 107 100 107 107

Note: OLS regressions in the test sub-sample. The outcome variable is the treatment effect (on gas consumption
in 2022h2) as predicted by ML. Standard errors in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01.

27



Table A.3: Testing treatment effect heterogeneity in the test sample

treatment effects estimated using BJS
(1) (2) (3) (4) (5) (6)

Food (0/1) 0.223∗
(0.12)

Chem., pharma., rubber (0/1) -0.215
(0.14)

Wood, paper, furniture (0/1) 0.0503
(0.22)

Nat. gas indispensable (0/1) 0.341∗∗∗
(0.13)

EU ETS (0/1) 0.231∗∗∗
(0.07)

Gas intensive (0/1) 0.313∗∗∗
(0.11)

R2 0.01 0.02 0.00 0.08 0.01 0.02
N 107 107 107 100 107 107
Standard errors in parentheses
∗ ? < 0.10, ∗∗ ? < 0.05, ∗∗∗ ? < 0.01

Note: OLS regressions in the test sub-sample. The outcome variable is the treatment effect (on gas consumption
in 2022h2) as estimated by the imputation methods by Borusyak et al. (2024).
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Appendix K Price elasticity of energy demand

Throughout the paper, we compute the price elasticity of energy demand by combining
our estimates of the effect of fixed-price contract expirations on (log) prices and on (log)
quantities obtained from the Borusyak et al. (2021) estimator. In practice, we follow an
IV-LATE approach, where we scale the average treatment effect estimated in the quantity
equation by the average treatment effect estimated in the price equation.27 Under standard
IV-LATE assumptions, we can construct an estimate of the elasticity � as follows:

� =
4 �̂

@ − 1
4 �̂

? − 1

where �̂@ and �̂? are the estimates of, respectively, the average treatment effect on the log
quantity and on the log price of energy.

We construct standard errors using the delta method. The vector of partial derivatives is:

∇� =


4
�̂
@
C

4
�̂
?
C −1

− (4 �̂
@
C −1)4 �̂

?
C

(4 �̂
?
C −1)2

.


The variance of � is given by:

�2
� = ∇)

�Σ∇�

where

Σ =

 �2
�̂
@

C

��̂?C �̂
@

C

��̂?C �̂
@

C
�2
�̂
?

C


is the 2x2 variance covariance matrix obtained using the formula in Theorem 3 in Borusyak
et al. (2021).

27An alternative approach could be to regress the individual treatment effects from the price equation on
the individual treatment effect from the quantity equation following Deryugina et al. (2020). However, this
strategy is unfeasible in our application because we construct prices as the ratio between expenditures (in
monetary terms) and physical quantity (see section 2). Thus any measurement error in quantity will translate
in a measurement error of opposite sign in prices, thus yielding a negative correlation by construction. This
issue is reminiscent of the “division bias” discussed by Borjas (1980) in the context of using the ratio of earnings
and hours as a proxy for wage in the regression of hours on wages.
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The variance of the elasticity is thus

�2
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