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Abstract
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reductions are accommodated both via input substitution and output reduction.
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1 Introduction

How do firms cope with a large and sudden upsurge in energy prices? Until recently,
this question had little practical relevance, but the 2021-2022 energy crisis has changed this
perspective, sparking serious concerns with regard to its consequences on the European
economy.1 Understanding how such episodes affect firms and how they react is key to
inform policymakers on the most efficient way to manage future energy crises. Beyond its
relevance for emergency periods, addressing this question carries important implications for
the green transition, given the steadily increasing prices of fossil fuels along the path towards
achieving Net Zero.

In this paper, we answer the question above by providing fresh evidence from the 2021-22
European energy crisis, when the wholesale price of natural gas increased from around
30 euros per megawatt hour (MWh) to 300, triggering a similar increase in the price of
electricity.2 The magnitude of the shock was unprecedented in European history, with the
only comparable episode being the oil crisis in the 1970s. Existing works on the 2021-22 crisis
have relied on timely but aggregate time series data (Ruhnau et al., 2022; Corsello et al., 2023;
Alessandri and Gazzani, 2023; Moll et al., 2023), while papers using microdata on previous
time periods (von Graevenitz and Rottner, 2022; Fontagné et al., 2023; Gerster and Lamp,
2023) often leverage comparably smaller energy price shocks and thus may not be readily
applicable when trying to understand how firms navigate severe energy crises. In contrast,
we use survey microdata on manufacturing firms covering the period 2021-22, which allow
us to identify large energy price shocks to firms and their effects on their energy demand,
input substitution, capacity utilization, and final output prices.3

For identification, we exploit the fact that wholesale energy prices are transmitted only
gradually and partially to the actual energy prices paid by firms. Our novel empirical
strategy is based on the staggered expiration of fixed-price energy contracts at the firm
level, which we proxy using ad-hoc survey questions. Firms are asked whether they were
endowed with fixed-price contracts or financial instruments subscribed before the crisis and
for how many months this protection lasted during the crisis. Thanks to this information, we
use a staggered difference-in-differences approach and compare firms that lose fixed-price

1For example, a joint statement by European industrial energy consumers in March 2022 reads: “The events
[ed. the invasion of Ukraine] have further precipitated Europe in a profound energy crisis that compromises the future of
Europe’s industrial base and the independence of its economy.”.

2The design of the wholesale electricity market is such that the price is set by the marginal producer, which
is a gas-fired power plant in most cases.

3The survey is the Inquiry into investments of industrial and services firms (Invind), an annual survey conducted
by the Bank of Italy since 1984. Over the years, it has been used to address a number of research questions
(Pozzi and Schivardi, 2016; Rodano et al., 2016; Guiso and Parigi, 1999; Bond et al., 2015; Schivardi et al., 2021).
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protection with those that will experience the same event in the future, or that never will
during our observation window.

In order to estimate the effect, we mainly rely on the imputation estimator proposed by
Borusyak et al. (2021), but our results are robust to alternative staggered difference-in-
difference estimators (De Chaisemartin and dHaultfoeuille, 2020; Callaway and SantAnna,
2021; Sun and Abraham, 2021). We assess the validity of our research design by always pre-
senting event-study graphs and tests for underlying pre-trends. In addition, we show that
our results hold when using the synthetic difference-in-differences method (Arkhangelsky
et al., 2021), which allows to considerably loosen the requirement of parallel trends between
treated and control units.4

We show that the expiration of a fixed-price contract – as measured in our survey – exactly
coincides with a sudden increase in the retail price of both electricity and natural gas at the
firm level. Effect sizes are economically meaningful: even after accounting for government
policies that partially mitigated price increases, retail prices for the average firm increase up to
47% in the case of electricity and 29% in the case of natural gas. This result is relevant in and of
itself, because it highlights the importance of fixed-price inventory contracts, routinely used
by firms for purchasing several inputs (Kumar and Wesselbaum, 2024), in the transmission
of macro shocks.

In response to higher retail energy prices, firms do not change their demand for electricity.
Instead, they reduce their demand of natural gas, but only in the second half of 2022, irre-
spective of the cohort of treatment. Pooling effects across cohorts, we find that in that period
the average firm reduces gas demand by 34%. We argue that this delayed response in nat-
ural gas adjustment is because of the pessimistic expectations about the continuation of the
crisis emerging in the summer months of 2022, when the spot price reached unprecedented
levels (more than 300 euros per MWh) and futures markets were forecasting that the gas
price would stay at very high levels (around 200 euros per MWh) at least until mid-2023.
These patterns of behaviour are consistent with a model of adjustment costs (Pindyck and
Rotemberg, 1983; Atkeson and Kehoe, 1999), where (perceived) temporary shocks lead to
inaction (as in second half of 2021 and the first of 2022), while (perceived) permanent ones
prompt action (as in the second semester 2022).

We conduct an extensive heterogeneity analysis with random forests and show that the drop
in gas consumption in the second half of 2022 is larger (-41%) among firms who declare
that this input is not essential in their production process, and smaller (-28%) for those

4Examples of recent papers using this method include Banares-Sanchez et al. (2023); Debnath et al. (2023);
Lang et al. (2023); Rauh and Shyu (2024).
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who declare that gas is an essential input (the difference is significant at the 10% level).
Interestingly, firms declaring that gas is essential constitute a sizable group (more than 50%),
spread over many economic sectors, and include almost all gas intensive firms5. Among the
latter group, made of a thousand firms accounting for 20 per cent of national natural gas
consumption, the downward adjustment in the second half of 2022 is even smaller (-8%).

We then proceed to calculate price elasticities of electricity and gas demand by rescaling
the quantity effects by the price effects estimated above. As for electricity, this parameter
is zero on average and not different across different types of firms. While this appears in
sharp contrast with other estimates from recent studies on the pre-crisis years (e.g. between
-0.4 and -0.6 on average in Marin and Vona (2021); Fontagné et al. (2023); von Graevenitz
and Rottner (2022)), recent estimates using large shocks on large electricity consumers find
smaller elasticities (between -0.09 and -0.2 in Gerster and Lamp (2023)). Moreover, the studies
above also find smaller elasticities for larger shocks and in more recent periods, consistently
with our results.

As for natural gas we find an average demand elasticity equal to -1.1, higher compared to
the older literature (Labandeira et al., 2017), but broadly in line with the recent findings of
Fontagné et al. (2023) (between -0.9 and -1.2). In addition, we find substantial heterogeneity
in the gas elasticity across firms: -0.5 for firms for which natural gas is an essential input and
-2.5 for other firms; -0.03 for gas intensive firms, -1.3 for the other firms.

Our elasticity estimates have direct policy implications. Among other things, these numbers
are useful to estimate the extent to which price-distorting support measures used during
the crisis have increased natural gas demand. Similarly to Deryugina et al. (2020), we use
a simple and standard tax incidence formula to study how the equilibrium consumption
of natural gas changes after the introduction of a per-unit quantity subsidy. We show that
the heterogeneity in demand elasticities that we uncover bear sizable implications for the
equilibrium consumption response, provided that the supply elasticity is not too low.

In the second part of the paper, we investigate the potential mechanisms behind these patterns
of adjustment in energy demand. On the one hand, firms that adjust gas consumption
downwards can substitute it with other inputs and/or reduce their output. On the other
hand, firms that do not reduce their energy consumption can shift their cost increases to the
prices of their final goods and/or reduce their profit margins.

5We base our definition of “gas intensive” firms on Italian legislation: Ministerial Decree of the Ministry for
the Green Transition n.541 of 2021. Gas intensive firms must have annual consumption above 1 GWh, belong
to certain industrial sectors, and have gas intensity (measured as expenditure for gas natural on sales and/or
value added) above certain thresholds.
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In order to look at input substitution, we rely on administrative data on plants subject to
the European Emission Trading System (EU ETS), which record physical quantity use of
all energy and non-energy fossil fuels at an annual frequency, starting from 2018. Upon
expiration of fixed-price contracts, EU ETS plants decrease gas demand and increase the use
of other fossil fuels. On net, our point estimates indicate that this substitution accounts for
at most half of the energy content that is lost with decreased gas consumption, though these
effects are rather imprecise. Substitution is incomplete at best, as treated firms are unable or
unwilling to completely offset the natural gas drop by using other fossil fuels.

In order to look at firms’ physical output, their profit margins, and prices of their final goods,
we turn to a longer yearly panel of our survey covering the 2018-2022 period. Here we
exploit quantitative survey questions on plant capacity utilization, the growth rate of final
good prices and a categorical variable indicating profit levels. Upon expiration of a fixed-
price contract, in 2022 plant capacity utilization decreases by less than 2 p.p. for the average
firm (not significant), from an average baseline of 80%. Also, we are not able to detect any
significant heterogeneity across different types of firms. Conversely, being exposed to the
energy shock reduces the probability to have a positive profit margin by 10 percentage points
in 2022. This effect is sizable as in our sample about 80% of firms declare they make profits.
When looking at the growth rate of final prices, in 2022 we find that the shock leads to a
decrease of 2.7 percentage points, not significant. The average price increase in our sample
was 11% in the same year and no firms decreased their price. The empirical pattern in our data
is consistent with a model of strategic complementarities, where rivals’ shocks matter for one’s
price adjustment, or a model of price taking, where firms’ final output prices do not depend
on idiosyncratic cost shocks, but just market-wide cost shocks (Duprez and Magerman, 2018;
Amiti et al., 2019; Muehlegger and Sweeney, 2022). As for prices, some interesting patterns
emerge among gas intensive firms: upon exposure to the shock, they do increase significantly
their final good prices. This indicates that pass-through was a successful strategy for this
type of firms which did not cut gas consumption by much; this result is in line with recent
evidence in Lafrogne-Joussier et al. (2023).

Our paper contributes to different strands of the literature. First, we contribute to the
literature on the effects of the 2021-2022 energy crisis. Previous studies have looked at the
impact of the crisis on inflation and on output either using aggregate data (Ruhnau et al.,
2023; Alessandri and Gazzani, 2023; Moll et al., 2023) or calibrating models with pre-crisis
estimates on production parameters (Bachmann et al., 2022). In this paper we provide the
first firm-level evidence on the impact of the ongoing energy crisis on industrial firms’ input
demand, together with other relevant response margins, highlighting the role of treatment
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effect heterogeneity, also in the time dimension.

Second, we contribute to the literature estimating natural gas and electricity demand elastic-
ities for firms. While there is more credible evidence for households (Reiss and White, 2005;
Jessoe and Rapson, 2014; Auffhammer and Rubin, 2018; Hahn and Metcalfe, 2021; Costa and
Gerard, 2021; Deryugina et al., 2020), estimates for industrial firms are more limited and
traditionally used instrumental variables relying on sector or time-series variation.6 Our
work complements and is very much related to very recent pre-crisis contributions trying
to leverage across-firm variation in energy prices to estimate demand elasticities (Marin and
Vona, 2021; Fontagné et al., 2023; von Graevenitz and Rottner, 2022; Gerster and Lamp, 2023;
Blonz, 2022). In our work we propose a new and credible identification strategy based on the
availability and staggered expiration of fixed-price contracts and other hedging instruments
already in place before the crisis, which slow down the transmission of wholesale to retail
energy prices for some firms, more than others. This prevents our effects to be confounded
by aggregate contemporaneous shocks.

Third, our results are relevant for the literature on the economic effects of the green transition.
In fact, a higher reliance on renewable sources might result in higher volatility of energy prices
(Ketterer, 2014; Rintamäki et al., 2017). Furthermore, the way firms react to energy input
price shocks is related to how they react when facing carbon pricing schemes, which is the
subject of an extensive literature (Martin et al., 2014; Cui et al., 2018; Colmer et al., 2023;
Martinsson et al., 2024).

Fourth, the paper is related to the literature on the pass-through of cost shocks (Ganapati
et al., 2020; Amiti et al., 2019; Muehlegger and Sweeney, 2022; Lafrogne-Joussier et al., 2023).
While we do not estimate a pass-through rate due to data limitations, we show that during the
crisis firms did not differentially increase their prices depending on their own idiosyncratic
shocks, with the exception of gas intensive firms.

Finally, we contribute to the staggered difference-in-differences literature by applying ma-
chine learning tools to estimate treatment effect heterogeneity, as extensively used in the
context of randomized experiments. While Hatamyar et al. (2023) applied this approach for
the staggered difference-in-differences design extending the Callaway and SantAnna (2021)
estimator, we build on the imputation method by Borusyak et al. (2021).

6Previously used instruments for the price of energy in a demand equation include: price paid by the
household or industry sector only (Burke and Abayasekara, 2018; Csereklyei, 2020), domestic natural gas
reserves and distance weighted reserves in other countries (Burke and Yang, 2016), lagged prices (Graf and
Wozabal, 2013), the spot price of Brent crude oil (Davis and Muehlegger, 2010), weather shocks (Hausman and
Kellogg, 2015), wholesale prices (Faiella et al., 2022) among others.
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The paper is structured as follows. In Section 2 we provide background on the energy
crisis and on the retail energy market in Italy. In Section 3 we describe the data, how we
validate survey answers against administrative sources and national accounts, together with
the measurement of key variables. In Section 5 we describe our identification strategy. In
Section 6 we show the main results on energy cost and demand. In Section 7 we present
additional results for other outcomes. In Section 8 we illustrate the policy implications of
our results with some simple incidence calculations and in Section 9 we conclude.

2 Background

2.a The 2021-22 energy crisis in Italy

In 2020, one year before the beginning of the energy crisis, Italy was a net importer of natural
gas: imports accounted for 93% of gross inland consumption. Of these imports, Russia
accounted for 43%, making it a key supplier. Italy was also a net importer of electricity,
and natural gas accounted for approximately half of domestic power generation. The high
reliance on natural gas in electricity production coupled with the marginal price system at
work in the day-ahead power market implies that shocks to the wholesale price of natural
gas almost completely pass-through to the wholesale price of electricity.7 Figure 2.1 plots the
evolution of the wholesale price of natural gas (solid red line) and electricity (dashed black
line) in Italy. The price of gas was rather stable at low levels until mid-2021 (around 30 euro
per MWh). After that, it slowly started to rise above historical levels. The first major upswing
occurred in the fall of 2021, when the price went above 100 euros per MWh; the second took
place in December of the same year, when it almost reached 200 euros. After a temporary
drop, the price rose up to around 250 in February when Russia invaded Ukraine, but rapidly
decreased thereafter and stabilized below 100 until summer 2022. At that point, the price
climbed again quite rapidly, reaching a historical peak at over 300 euros in late August 2022.
Before the end of the year, the price dropped to much lower levels and then up again, before
a final descent to 70.

For the purpose of our empirical analysis, which we conduct at the half-yearly frequency,
note that the first semester of 2021 can be considered as a pure pre-crisis period, as firms
were not exposed to high energy prices. The wholesale prices of gas and electricity start
to increase in the second semester of 2021, thereby affecting all firms without a fixed-price
contract signed before the crisis.

7The two time series of gas and electricity prices are indeed highly correlated (98% at the daily frequency).
In levels, the price of gas is lower than electricity because gas is an input in the production function of power.
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Figure 2.1: Wholesale gas and electricity price at the daily frequency

Source: Italian Power Exchange (GME). Note: The figure shows the spot price of natural gas and electricity
traded on the Italian day-ahead wholesale market.

2.b The Italian retail energy market

Following a broader trend in the European Union, the Italian retail markets for electricity
and natural gas have been gradually liberalized in the late 1990s (Polo and Scarpa, 2003).
According to the Regulatory Authority for Energy, Networks and Environment (ARERA),
both the market for electricity and for gas are not very concentrated (ARERA, 2022).8

The contracts offered in the liberalized market are highly heterogeneous and customizable
in terms of conditions and prices, but can be broadly split between fixed-price and variable-
price contracts. Fixed-price contracts typically have a standard duration of 12, 24, or, less
frequently, 36 months. Each supplier can offer as many contracts as it sees fit. However,
for households and firms with a low-voltage connection for electricity (a minority in our
sample) and an annual gas consumption below 200,000 standard cubic meters (one third
of our sample), the supplier is required to also offer two standardized contracts - one with
variable and one with fixed price. While the conditions for these standardized contracts are
designed by ARERA, suppliers compete on price.9 All the contracts posted on the market,
whether standardized and not, are published daily on a website managed by a government
agency10. The portal does not include information on large and/or energy intensive firms,
which usually negotiate ad hoc contracts directly with their supplier.

8Households and very small businesses – outside the scope of our analysis – can still participate in a
“protected” market (mercato tutelato), where ARERA periodically sets a controlled price. As of 2024, the
transition to a fully liberalized market and the elimination of the “protected” market are almost complete but
still ongoing.

9Standardized contracts should allow unsophisticated customers to easily compare prices across sellers.
10https://www.ilportaleofferte.it/portaleOfferte/
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For the purpose of our empirical analysis, note that firms that signed a fixed-price contract
before the start of the crisis (first semester 2021 and earlier) are not exposed to the increase
in the wholesale price until the expiration of their contract. At the moment of signing a new
contract, after the expiration of the previous one, they will be hi by a cost shock whether
or not the new contract is a fixed-price contract (which became more difficult to find) or a
variable one, because they both became more expensive. In Appendix A, we provide more
details on the supply and demand of both types of contracts and their prices in 2021 and
2022, using information from ARERA.

3 Data

The main data source used in this paper is the Indagine sulle imprese industriali e dei servizi
(Inquiry into investments of industrial and services firms; henceforth, Invind), an annual
survey conducted by the Bank of Italy since 1984 and representative of industrial and services
firms with at least 20 employees. The Bank conducts the survey between February and May of
every year C and contains information on standard firm-level variables such as sales, profits,
employment, costs, capacity utilization, actual and expected own price changes and actual
and expected investment in year C − 1. Invind data have been used before in the literature to
address a number of research questions11 and it is also routinely used by the Bank of Italy
to provide timely evidence on sales and investment dynamics as well as other issues in its
official reports.

For the purpose of this study, at the end of 2021 we designed an ad hoc section on the 2021
energy crisis, administered in the spring of 2022 (henceforth, 2021 wave) only to industrial
firms with 50 employees or more. The following year, at the end of 2022, we designed a new
survey wave that was administered to firms in the spring of 2023 (henceforth, 2022 wave).
We restrict our sample to firms that use energy as an input, that is we drop NACE sectors 19
(manufacture of coke and refined petroleum products) and 35 (electricity, gas, steam and air
conditioning supply).

The main advantage of this survey is that we could gather timely information on firms’
energy expenditures and consumption, together with hedging strategies, which we could
directly link to other more standard firm-level variables. This is particularly useful as no
other representative firm-level data source on 2021-22 is available at the moment.

11These include the impact of productivity and demand shocks on firms’ growth (Pozzi and Schivardi, 2016),
bankruptcy law and bank financing (Rodano et al., 2016), the determinants of investment demand (Guiso and
Parigi, 1999; Bond et al., 2015), mechanisms behind agglomeration economies (Andini et al., 2013) and the role
of management practices during the Covid-19 pandemic (Schivardi et al., 2021)
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3.a Structure of the energy survey section

The 2021 wave contained nine quantitative questions, while the 2022 wave contained twelve
quantitative questions. We report all of them exactly as they appeared to firms in Appendix
B. The results of the analysis based on wave 2021 alone were carried out during 2022 and
reported in a Bank of Italy working paper (Alpino et al., 2023). Questions in the second wave
were designed after conducting such analysis.

In both waves, the survey asks firms to indicate both expenditures (in thousands of e )
and physical quantities (in MWh and standard cubic meters) for electricity and natural gas
purchases separately, both during the first and second semester of the previous year (2021
and 2022).12 Dividing expenditures by physical quantities at the half-yearly frequency allow
us to construct firm-level average unitary costs (retail energy prices, henceforth) for electricity
and natural gas, separately for each semester of 2021 and 2022.

Importantly for our identification strategy, in both waves we ask firms questions about their
fixed price contracts or equivalent hedging tools that firms were endowed with before the
start of the crisis (more precisely at the beginning of 2021). We explain in detail how we use
these variables to build our treatment variable in Section 3.e.

In the 2022 wave we also collect additional information on subsidies received under the tax
credit scheme implemented by the Italian government in 2022 to mitigate the impact of the
energy crisis on firms. This is the single largest policy implemented in Italy to cushion firms
against higher prices and the only one that would not be directly visible in the energy bills
that we observe in the survey (such as cuts in VAT and administrative and environmental
fees). In Section 6 we show that our treatment variable is still strongly predictive of changes
in average unitary costs, net of any government transfers, eliminating concerns that our
treatment may not have enough power.13

3.b Other data sources

We supplement the survey data with other confidential administrative information, which
we match through firms’ unique tax identification numbers. We gather information on
whether firms have at least one plant subject to the EU Emissions Trading System (EU ETS).
For these factories we have detailed input use by fuel at the yearly frequency from the Italian
Institute for Environmental Protection and Research (ISPRA). We use these data on fuel

12This purposefully excludes self-production of energy by firms.
13Estimates included in the Bank of Italy Annual Report for 2022 indicate that the Italian tax credit helped

industrial firms to reduce their average unitary costs for electricity and natural gas by 13 and 18%, respectively.
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consumption both to validate the gas consumption measures in our survey, and to study the
substitutability away from gas towards other inputs. In addition, we use micro-level energy
consumption data from the Fund for Energy and Environmental Services (CSEA) on firms
which are eligible for energy subsidies, because of their high electricity or gas intensity and
levels of consumption (energivore firms).14 For electricity intensive firms we observe electricity
consumption (in MWh) at the monthly frequency since 2018.15 For gas intensive firms, we
observe natural gas consumption (in standard cubic meters) at the monthly frequency in
2019, 2021 and 2022.16 These companies, slightly less than 4,000 in Italy, belong to the right
tail of the energy-intensity distribution.17 Similarly to the ISPRA data, we also use the data
from CSEA to validate our survey measures.

Moreover, we use additional information from the Italian National Institute of Statistics (Istat)
on the energy intensity of the Italian industrial sectors at the level of 2-digit NACE industries
and Eurostat data on average retail prices and consumption for industrial consumers by
consumption bracket. These data are useful to validate our survey measures, as succinctly
described in the next subsection. All of the validation analyses are reported in Appendix D.

Finally, we also use some information from a different Bank of Italy survey (Business Outlook
Survey of Industrial and Service Firms, Sondtel) which allows to identify firms for which natural
gas is an essential input.

3.c Validation of survey answers

Given that respondents might not be familiar with physical units of energy, we validate
our measurement by verifying whether self-reported quantities of gas and electricity or the
respective expenditures take plausible values. We do this in several steps, which we briefly
review here, although we provide more details in Appendix D.

14The registry is publicly available on the website of the Fund for energy and environmental services (portale
elettrivori, Cassa per i servizi energetici e ambientali, CSEA).

15The subsidies have been in place for several years and grant a permanent discount on the component of
the electricity price that is earmarked to finance subsidies for renewable energy generation (oneri di sistema
A3*SOS). This component was completely lifted for all firms starting from January 2022, while in the last three
quarters of 2021 it was lifted for low-voltage consumers (e.g. households and small firms).

16The concept of gas intensive firms was introduced during the crisis to identify firms more exposed to the
energy shock. Since 2023, these firms enjoy a permanent discount on the component of the natural gas price
that is earmarked to finance policies aimed at reaching emission reductions to meet EU goals (componente '���

and '�)��).
17In order to qualify for the subsidy scheme, firms must consume at least 1 GWh of electricity or gas per year.

In addition they must belong to a specific set of 4-digit NACE industrial sectors defined by the EU regulation on
State Aid; for a sub-set of these sectors there is the additional requirement of having the ratio between energy
expenditure and value added or sales higher than a threshold.
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First, excessively high or low figures suggest that respondents get the order of magnitude
wrong, e.g. kWh instead of MWh. To determine what is an excessively high or low figure,
we rely on two benchmarks: (i) Eurostat data on average unitary prices for non-household
consumers; and (ii) Invind data on the ratio between total energy costs and turnover. In the
first wave of the survey, we flag systematic mistakes in the units of measurement in 22%
(21%) of our observations on electricity (natural gas); we address this issue by appropriately
re-scaling the values. The next year, such shares are 22.5% and 18% respectively. In some
instances, whenever we cannot reconcile the replies with a plausible mistake type about units
of measurement, we adopt a precautionary approach and disregarded such observations
from the estimation samples; this is the case for 6.1% (6.3%) of the observations on electricity
(natural gas) consumption in the 2021 wave and 3.8% (6.2%) of the observations in the 2022
wave.

Second, given that for energy-intensive and firms owning plants subject to EU ETS we
do have administrative micro-level information on consumed quantities, we make a direct
comparison between survey answers to admin data. These comparisons lend credibility
to the accuracy of both our raw data and our adjustment algorithm. Only 2.8% (4.5%)
of the electricity sample and 2.1% (2.5%) of the natural gas sample in 2021 (in 2022) were
conservatively dropped due to differences larger than 35% in absolute value between survey
and administrative records.

Finally, note that our baseline results are virtually unchanged when dropping all observations
for which we adjust the unit of measurement.

3.d Non-response bias

Invind is a yearly business survey administered by the Bank of Italy since the 1980s, routinely
used in the Bank’s official reports and that has been used before in economic research to an-
swer a variety of questions.18 The Bank interviews the same set of firms every year, adjusting
for exit. In order to maintain survey representativeness of the target population in each year,
unit non-response is taken care of using a standardized raking post-stratification procedure.
This amounts to adjusting survey weights ex-post such that marginal distributions of key
variables are equal to those in the population (Bank of Italy, 2017).

Even absent issues related to unit non response, we need to consider that not all Invind
respondents provide valid replies to our ad hoc energy sections, generating an item non

18See Pozzi and Schivardi (2016); Rodano et al. (2016); Guiso and Parigi (1999); Bond et al. (2015); Schivardi
et al. (2021)
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response issue. In order to mitigate concerns that this generates bias, in Appendix E we
use an inverse-probability-weighting strategy (Wooldridge et al., 2002; Stantcheva, 2022) and
show that our results remain unaltered even after assigning larger weights to firms having
attributes that make them more likely not to respond to the energy sections.

3.e Measurement of key variables

In this section we illustrate how we use answers to our survey questions to build cohort-of-
treatment dummies that we use in our staggered difference-in-differences design.

In the 2021 wave of the survey, we ask: “At the beginning of 2021, did your firm own any
instrument that protected it, wholly or partly, from the energy price increases over the second half
of the year?”. This comes with four possible replies: (a) No (b) Yes, fixed-price contracts (c)
Yes, financial derivatives (d) Yes, other instrument. Given that the vast majority of protected
firms in the sample declare they use fixed-price contracts, we collapse all "Yes" answers and
construct a dummy variable called �2021

8
(=1 if protected).

Two things are worth noticing. First, the formulation specifies that the question refers to
contracts already in place at the beginning of 2021, a time when the markets did not foresee
the upcoming crisis.19 This is key to ensure that the question does not pick up firms that
subscribe fixed price contracts as an endogenous response to the crisis. Second, notice that
this question conflates both protection from increases in electricity and in natural gas prices,
due to space constraints in the survey. The fact that we cannot measure these separately can
introduce measurement error. Reassuringly, this variable is strongly predictive of changes in
average unitary cost of both electricity and natural gas between the first and second semester
of 2021.20

In the 2022 wave of the survey, this time separately for electricity and natural gas, we ask: “In
2022, did your firm have instruments (for example fixed-price contracts or derivatives) to protect itself,
even partially, from rises in the prices of electricity (natural gas)?”, with two possible replies: (a)
Yes (b) No. Similarly to before, for a given input 9 = {electricity, natural gas}, we construct
a dummy called �

9 ,2022
8

taking value 1 if the firm 8 had any instruments. Furthermore,

19As late as March 2021, future markets were expecting the TTF price of natural gas next October to be in line
with the average value for the same month in the previous five years (around 15 euro). By July, the expectation
had climbed to 36 euro, still well below the final realized price of 76.

20The correlation is stronger for electricity. This is consistent with evidence from the Survey on Inflation
and Growth Expectations of the Bank of Italy, where this information was asked separately. Evidence therein
shows that almost all firms with a fixed price contract for gas have the same type of contract also for electricity,
while among those firms with fixed price for electricity, two thirds have the same type of contract for gas. More
details are provided in Alpino et al. (2023).
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separately for electricity and natural gas, we ask: “If yes, how many months did this protection
last in 2022?”, with open answer. We call this variable <

9

8
, again for a given input 9 =

{electricity, natural gas}.

Restricting our attention to firms present in both waves, we combine answers from both
questions to build an input-specific treatment cohort variable �

9

8
, indicating the semester (ℎ)

when the firm is first exposed to higher prices for a given input 9 = {electricity, natural gas}
(0 if it is never exposed in the observation window). The variable is constructed as follows:

�
9

8
=



2021ℎ2, if �2021 = 0 and � 9 ,2022 = 0

2022ℎ1, if �2021 = 1 and � 9 ,2022 = 0

2022ℎ2, if �2021 = 1 and � 9 ,2022 = 1 and <
9

8
= 6

0, if �2021 = 1 and � 9 ,2022 = 1 and <
9

8
= 12

(1)

We consider all firms to be untreated in 2021ℎ1, as the crisis has not yet started in the
wholesale market, something we documented in Section 2. Some firms remain untreated for
some periods after that, if they have a fixed price contract signed before the start of the crisis.
21 The variable �

9

8
split firms in four treatment cohorts.

Early treated Firms with �2021 = 0 and � 9 ,2022 = 0 are immediately exposed (�8 = 2021ℎ2)
because they were not protected nor in 2021 nor in 2022. Note that this cohort most likely
includes both firms on variable price contract and firms on fixed price contract expiring
sometime in the second semester 2021, that is after the start of the crisis. In Appendix G we
show that treatment effects are not different for this particular cohort, mitigating concerns
that its composition may affect the results, an issue also discussed in Section 5.b. We call
these firms the “early treated”.

Mid treated Firms with �2021 = 1 and � 9 ,2022 = 0 are first exposed in the first semester 2022
(�8 = 2022ℎ1), because their fixed price contract expired at the end of 2021. Note that in 2022
the price they pay for energy is higher compared to the previous year, regardless of whether
they sign a new fixed-price contract or a variable-price contract, because both types became
more expensive after the start of the crisis in late 2021. We call these firms the “mid treated”.

21Note that purchasing a fixed price contract after the start of the crisis does not ensure protection, because
the price of those increased dramatically. Even though signing a fixed price contract in early 2022 (after the start
of the crisis but before the invasion of Ukraine) might have might saved firms some money relative to being
on a variable contract, this case surely implies higher cost compared to firms that have a fixed price contract
signed before the crisis.
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Late treated Firms with �2021 = 1 and < 9 = 6 are “late treated”: protected during 2021 and
during 6 months in 2022. We assume these are the first 6 months of the year. In particular,
we assume that at the beginning of 2021 the firm was holding a fixed-price contract signed
at the beginning of 2021 that eventually expired in mid-2022. Thus, we set �8 = 2022ℎ1 for
these firms. We test the validity of this assumption in our event-study analysis by checking
that price of input 9 increases in line with our assumed timing for this specific cohort (see
Appendix G).

Pure control group Firms with �8 = 0 are protected during 2021 (�2021 = 1) and during 12
months in 2022 (< 9 = 12). They constitute our “pure control group”. Note that in principle
the formulation of our question in 2022 does not ensure that the pure control group are
protected under the exact same contract signed at the beginning of 2021, for which they
declared to be protected in the first survey. In principle, they might have purchased a new
fixed price contract in January 2022, but in Appendix G we show that this is not consistent
with our data. In particular we show that the price of energy input 9 for the “mid treated”
increases relative to the “pure control group” starting in 2022h1, so it cannot be that both
groups had their contract expiring at the end of 2021.

In total, our electricity sample is made of 413 firms, while our gas sample is made of 308
firms.22. Through this sample selection procedure we are dropping firms that are protected
for only part of a given semester in 2022. These are firms that have 1 ≤ <8 ≤ 5 or 7 ≤ <8 ≤ 11,
of which there are 31 in the case of gas and 20 in the case of electricity. As it is visible in
equation 1, this sample selection does not affect the composition of the “early treated” and
“mid treated”, but would affect the composition of the “late treated” and the “pure control
group”. Despite the small number of “late treated”, we prefer to exclude these firms, as
this creates a better alignment between the time dimension of the treatment variable and
of the outcome variable. If firms are fully protected in their last semester of protection,
the treatment becomes binary. Otherwise, the treatment would be continuous in the last
semester of protection, making it harder to interpret the effects.

There is another group of firms that we exclude: (ii) firms that were not insured in 2021
(�2021 = 0) but were protected during 2022 (�2022 = 1). These are 14 firms in the gas sample
and 32 firms in the electricity sample. This is because we see this form of protection as
potentially endogenous to potential outcomes. Firms who choose to insure themselves after
receiving the shock in 2021 may do so in anticipation of their treatment effects, leading to
bias. Instead, in all of our regressions we condition on firms being insured at the beginning

22The share of firms in each cohort, together with other summary statistics can be found in Table 4.1
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of 2021, when market participants were not foreseeing the upcoming crisis. Thus these firms
were exposed sooner rather than later to the energy shock because of the timing of expiration
of their contracts, and not because some of them decided to take action in anticipation of the
crisis. We further discuss the validity of our identification assumptions in Section 5.b.

For some of our analyses and specifically those on input substitution and firm performance,
we must rely on a yearly panel. In that setting we change the definition of our cohorts
of treatment, again to better align the time dimension of our treatment and our outcome
variables. When we collapse the treatment at the yearly frequency, many more firms see
their electricity contracts expire when their gas contracts expire. Since we do not have a lot
of separate variation for the two inputs, we construct a joint yearly treatment cohort �.

8
in

the following way:

�.
8 =


2021, if �2021 = 0 and �2022,4 ;4 = 0 and �2022,60B = 0

2022, if �2021 = 1 and �2022,4 ;4 = 0 and �2022,60B = 0

0, if �2021 = 1 and �2022,4 ;4 = 1 and �2022,60B = 1 and <4;4
8

= 12 and <
60B

8
= 12

(2)

The definition of the cohorts follows very closely that for the half-yearly frequency in equation
1. We end up with a greater sample of 837 firms. The number of firms is substantially higher
than in the half-yearly setting. This is because we also use firms that responded to our price-
protection questions but then do not respond to the energy expenditure and consumption
questions. As we show in in Table A.2 in Appendix K the sample is not too different from
the half-yearly one in terms of observable characteristics, a point on which we return below
in the results section.

3.f Outcome variables on firm performance

When looking at the impact of higher retail prices on firm-level outcomes other than energy
demand, we focus on three distinct outcomes that we draw from the Invind survey: the
growth rate in final goods prices23; capacity utilization and a Likert categorical variable on
profit margins. Here we describe in detail how they are constructed.

As for the growth rate in final good prices, we rely on a recurring quantitative open question
asking to report the “Average annual percentage change in selling prices of goods and
services” between year C and year C − 1.

23The level of final good prices is not available in the Invind survey.
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As for the measurement of output responses, firms are asked about the capacity utilization
of their plants, defined as the percentage ratio between actual production and maximum
possible output.

On profit margins, we rely on a recurring question asking: “Please describe the firm’s
operating result for 2022?”, that has five qualitative options: “1 = large profit; 2 = small
profit; 3 =broad balance; 4 = small loss; 5 =large loss.”. Based on this variable we construct a
dummy taking value one when the firm operates on “large profit” or “small profit”

4 Summary statistics

In Table 4.1 we report summary statistics for our energy demand estimation samples, i.e.
an electricity sample and a natural gas sample. Characteristics are measured before the
start of the crisis, that is in the first semester of 2021. As from the Invind sampling design,
included firms belong to the industrial sector and have at least 50 employees. All statistics
are weighted by survey weights. At the bottom we report the number of firms. The number
of observations can be retrieved by multiplying the number of firms by four (the number of
semesters).

Overall, the electricity and the natural gas sample have similar characteristics. As for the
sectoral distribution, more than half of the firms are in the metalworking industry, while the
remaining half is more or less evenly split across the other sectors. Non-metallic minerals
and water & waste remain residual categories in both samples. More than 80% of firms are
located in the North of the country, while only between 5 and 7% of the sample is in the South
or Islands. The unitary retail price of electricity is 16 euro cents per KWh for the electricity
sample and the average firm consumes around 6000 MWh of electricity in a semester. As for
gas, the average firm in the gas sample pays 10 euros per GJ of natural gas, while it consumes
63 million standard cubic meters of gas. Both in the electricity and gas sample, around
a third of firms are energy intensive according to the Italian legislation definition24, while
around 5% of them have plants subject to the EU ETS. Around half of firms in the gas sample
declare that gas is an essential input in their production process. Cohorts of treatment are
not evenly split. Only 14 or 18% in the electricity and gas sample, respectively, belong to the
pure control group. The biggest groups are the early treated (exposed in the second half of
2021) and the mid treated (exposed in the first half of 2022). The late treated (exposed in
the second half of 2022) is a residual category, accounting for 1% and 3% of the respective
samples. Finally, as noticed at the beginning, firms in our sample are relatively large, with

24We refer to the Ministerial Decree of the Ministry for the Green Transition n.541 of 2021.
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yearly revenues in the order of 80-90 million euros and more than 200 employees on average
(although these distributions are very skewed).

Table 4.1: Summary statistics for the electricity and gas samples

(1) (2)
Variables mean mean
Sectoral composition

Food and beverages 8% 6%
Textiles & apparel 13% 11%
Chem, pharma, rubber 12% 15%
Non-metallic minerals 4% 4%
Metalworking industry 51% 51%
Wood, paper, furniture 10% 11%
Water & waste 3% 3%

Macroarea
North-West 40% 43%
North-East 39% 40%
Center 14% 13%
South or Islands 7% 5%

Energy-related variables
Price of electricity (euro/KWh) 0,16
Price of natural gas (euro/GJ) 10,41
Quantity of electricity (GWh) 6,161
Quantity of natural gas (mil. smc) 63,406
Energy-intensive firm (0/1) 30% 29%
Subject to the EU-ETS 4% 5%
Gas is an indispensable input* (0/1) 54%

Cohorts of treatment
Pure control 18% 14%
Early treated 44% 45%
Mid treated 35% 40%
Late treated 3% 1%

Other firm-level information
Sales (million euro) 86,26 97,76
Labour force 204,2 224,9

Number of observations 413 308

Electricity sample Gas sample

Note: Invind data. The table reports summary statistics for the energy demand analyses used in Section
6. Characteristics are measured in the first semester of 2021, at baseline (thus the number of observations
corresponds to the number of firms). *The variable “Gas is an essential input” is taken from the Business
Outlook survey of the Bank of Italy and it refers to the beginning of 2022.
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5 Empirical strategy

5.a Main specification

In this section we describe how we isolate the causal effect of higher electricity and natural gas
prices on firms’ respective input demands. We consider the following econometric model:

log H8 9C = 
8 + �C +
3∑

:=0
�8 9: · 1(C − �

9

8
= :) + &8 9C , (3)

where H8 9C can either be the quantity @ or retail price ? of energy type 9 (electricity or natural
gas) for firm 8 in semester C. 
8 is a set of firm-level fixed effects that capture time-invariant
differences in outcomes between firms. �C is a set of calendar time fixed effects that capture
unobservable common trends across different firms. 1(C − �

9

8
= :) are dummies that capture

time relative to the contract expiration date � 9

8
(event time, henceforth).25 The coefficients �8 9:

are potentially heterogeneous treatment effects of contract expiration on firm 8 at horizon :

after the contract expiration.

Note that � 9

8
is specific to each energy type 9. We do not include �

9

8
for both types in the

same equation because they are highly correlated and lead to multicollinearity. The high
correlation is partly due to data limitations (the insurance question is not fuel specific in 2021;
see Section 3.e) and partly due to institutional features: data for 2022 shows that it is very
common to have the same type of contract for both fuels.26 Thus, when using quantity as
outcome, our design has two limitations. First, it does not allow to estimate cross elasticities.
We see this as a minor limitation because in our context the crisis induced an increase to the
wholesale price of both natural gas and electricity.27 As such, there was limited scope for
substituting one fuel with the other to reduce costs. In addition, substitution between these
two energy sources is technically difficult in the short run. Second, our design effectively
identifies the increase of the price of both electricity and natural gas; thus, even in the absence
of cross-substitution, quantity of one input might be affected by changes in the price of the
other input via a (negative) scale effect. This is not a concern in our setting. As we show in the
results section, electricity does not respond to higher prices, eliminating the concern that part
of the gas response could be driven by an electricity-induced scale effect. A similar argument
can be made for gas: since electricity does not respond at all, we detect no gas-induced scale

25See Section 3.e on how we construct this variable.
26The correlation between �

4;42CA828CH

8
and �

60B

8
is 0.59, between <

4;42CA828CH

8
and <

60B

8
is 0.72.

27The design of the wholesale electricity market implies that the price of electricity is equal to the bid of the
marginal power producer, which is a gas-fired power plant in most hours of the year.
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effect on electricity.

We estimate equation 3 on a balanced panel of firms observed during all the four semesters
of 2021-2022 using the “imputation estimator” of Borusyak et al. (2021). This estimator
is consistent for the average treatment effect on the treated (ATT) under standard parallel
trends and no-anticipation assumptions, which we discuss below. The estimator works in
three steps. First, it uses untreated (i.e. never-treated or not-yet-treated) observations of
each firm to estimate the following model: log H8 9C = 
8 + �C + D8 9C . Under the parallel trend
assumption this gives us an estimate of each firm’s counterfactual outcome absent treatment,
i.e. log H8 9C(0)̂. Then, for each treated period of each eventually treated firm it computes a
treatment effect (�8 9C) as the difference between the observed and the counterfactual outcome,
i.e. �8 9C = log H8 9C − log H8 9C(0)̂. Lastly, it aggregates up individual treatment effects (�8 9C) using
weights of choice, depending on the precise estimand of interest. In all of our specifications
we use survey sampling weights. In order to study treatment effect heterogeneity more
systematically, we compute (survey-weighted-)averages over subsets of firms. Standard
errors are clustered at the firm level to avoid known serial correlation issues (Bertrand et al.,
2004). Finally, as suggested by Borusyak et al. (2021), we estimate pre-trend coefficients by
a separate regression of the outcome on time fixed effects, firm fixed effects and dummies
for periods before treatment. This is estimated using only untreated observations for each
firm. As a consequence, in each event-study graph pre and post treatment coefficients are
from different regressions; pre-treatment coefficients are relative to the first untreated period
(: = −3), while post-treatment coefficients are relative to the average of the pre-treatment
periods. While the graphical representation differs from more conventional event-study
graphs, separating pre-trend testing from actual parameter estimation carries the advantage
of improving efficiency and removing the correlation between treatment effect and pre-trend
estimators, which could introduce bias if we trust the results only conditional on passing
pre-trend tests (Borusyak et al., 2021).

Despite our preferences for the imputation procedure, Appendix K shows that results are
robust when using the other staggered difference-in-differences estimators available in the
literature, including De Chaisemartin and dHaultfoeuille (2020), Callaway and SantAnna
(2021), Sun and Abraham (2021), and OLS.

5.b Validity of the difference-in-differences design

As it is standard in difference-in-differences designs, we make two assumptions. First, we
assume that firms’ potential log-outcomes absent treatment evolve according to the following
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simple additive model: log H8C(0) = 
8 + �C + D8C , a parallel trend assumption. Second,
we assume that observed log-outcomes are equal to untreated potential outcomes before
treatment i.e. log H8: = log H8:(0), a no-anticipation assumption.

As for the parallel trend assumption, we have good reason to believe that it holds in our
design. This is because the expiration dates for fixed-price contracts are predetermined and
not influenced by the crisis or firms’ endogenous responses to it. In defining our treatment
variable, we always condition on firms being already insured at the beginning of 2021, when
the futures market was forecasting a stable and low price of natural gas.28 Whether a firm’s
fixed-price contract expires sooner rather than later is only a result of when the contract
was last signed, a matter of luck more than anything else. While we cannot directly test
the parallel trend assumption, we always provide tests for parallel pre-trends and find no
evidence thereof.

Since some of these tests may be under-powered (Roth, 2022), as a robustness exercise, we
also estimate synthetic diff-in-diff specifications (Arkhangelsky et al., 2021), which make pre-
trends parallel by construction. Our results are confirmed qualitatively and quantitatively,
indicating that the estimates obtained with the Borusyak et al. (2021) estimator are not driven
by pre-treatment trends.

One may be concerned that the “early treated” cohort (�8 = 2021ℎ2) makes an exception to
the logic above. Indeed this group may include two sub-categories of firms, which we cannot
separate in the data. The first sub-category consists of firms that had fixed-price contracts at
the beginning of 2021 that expired in the second half of 2021. These firms subscribed fixed-
price contracts but simply were unlucky with the timing. The second sub-category consists of
firms that were under variable-price contracts and thus were immediately exposed to higher
prices. This latter group of firms might not have had protection because they expected to
perform particularly well in the event of an energy crisis. One may be concerned that this part
of early treated firms is fundamentally different and that the other cohorts do not represent
a good counterfactual for what would have happened to them, absent the treatment. Given
that for this group of early-treated we only observe one period before treatment, we cannot
perform a pre-trend test for them. To address this issue, in Appendix G we present cohort-
specific estimates and show that the results are not driven by any specific cohort, which
further mitigates concerns about bias. Furthermore, notice that the “early treated” cohort
never serves as a control group for the other cohorts.

28An analysis of energy futures suggests that market participants did not anticipate any surge in gas prices
until at least May 2021. For example, the contract expiring at the end of 2021 which eventually closed at 107
euro/MWh was trading at 18 at the beginning of February, at 20 at the beginning of April, at 24 at the beginning
of May, at 41 at the beginning of August.
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A related concern could be that some firms selected into longer fixed-price contracts because
they have stronger preferences for price certainty, an unobserved firm characteristic. If true,
then these firms would be more likely to be treated later or to belong to the “pure control
group”. As in any other difference-in-differences setting, level differences in potential out-
comes are be absorbed by the firm fixed effects. As long as differences in these preferences
affects the levels of these outcomes, they do not constitute a threat to our research design.
Our results could biased if this firm characteristic is correlated with changes in firms’ po-
tential outcome exactly around the time of contract expiration i.e. firms decreasing their
gas consumption after contract expiration because of the confounder and not because of the
contract. We think this is highly unlikely. Moreover, the absence of pre-trends is reassuring,
as this means that the confounder was not affecting changes in potential outcomes before
treatment.

As for the no-anticipation assumption, we always present pre-trend tests and verify that
treatment effects do not materialize before contract expiration. Also, the fact that treatment
effects are not significantly different across cohorts signals that anticipation is likely not an
issue in this setting.

6 Effects on energy prices and energy demand

Figure 6.1 reports our baseline results. Following Borusyak et al. (2021), all plots report
point estimates and associated 95% confidence intervals for average causal effects �: , with
: = {0, 1, 2} and pre-trend coefficients from a separate regression for : = {−2,−1} (omitted
category is : = −3).29 In the top two panels the outcome is the log of retail price of electricity
and natural gas. Correspondingly, in the two bottom panels the outcome is the log of physical
quantities of electricity and gas purchased by the firm. Since many of the �: coefficients are
relatively large, in the text we describe the magnitude of the effects by commenting on 4�: −1,
which transforms log changes in exact percentage changes.

6.a Effects on energy prices

In panel (a) we see that the retail price for electricity significantly increases when the fixed-
price contract expires, while there is no pre-trending of causal effects before the treatment
actually takes place.30 One year and a half after expiration, the increase is 47% relative to the

29We do not have sufficient information to estimate pre-trend coefficients earlier than this. The advantages
of separating estimation from pre-trend testing are discussed in Section 5.a

30The p-value of the pre-trend test is 0.13.
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Figure 6.1: The effect of the expiration of a fixed-price contract on average prices and quantities of
energy inputs at the firm level

(a) Average costs of electricity (b) Average costs of natural gas

(c) Quantity of electricity (d) Quantity of natural gas

Note: The figures show average causal effects of the expiration of a fixed-price contract on the average cost of
electricity and natural gas (panels (a) and (b)) and the corresponding demanded quantities (panels (c) and (d)).
Outcome variables are always in logs. Average causal effects before and after the treatment are estimated in
two separate regressions, using the “imputation” estimator by Borusyak et al. (2021), as described in Section 5.
Confidence intervals are at the 95% level.

baseline, quite precisely estimated. We find a similar pattern in panel (b), when looking at
the retail price for natural gas. Again, there is no evidence of a pre-trend31 and estimates are
precise. One year and a half after expiration, the increase is equal to 29% compared to the
baseline. Synthetic diff-in-diff estimates (Arkhangelsky et al., 2021), reported in Appendix
G, show that the timing and magnitude of the results hold for every cohort in isolation when
using only the “pure control group” as a comparison. From an econometric standpoint, this
evidence provides support to the validity of our design and of the coding of our treatment
variable.32 From an economic standpoint, our findings highlight the importance of fixed-price

31The p-value of the pre-trend test is 0.39.
32These results also underline that commonly used shift-share identification strategies (Linn, 2008; Ganapati

et al., 2020; Marin and Vona, 2021), which combine nation-wide swings in energy prices and cross-sectional
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inventory contracts, routinely used by firms for a variety of inputs (Kumar and Wesselbaum,
2024), in the transmission of macro shocks.

6.b Effects on energy demand

In panel (c) we study the (log-)quantity of (purchased) electricity. Despite the large price
increase, this outcome does not respond to the treatment. Coefficients are positive, close to
zero and confidence intervals are tight. We interpret these as precisely estimated zeros. We
do not find evidence of treatment effect heterogeneity33.

In panel (d) we investigate what happens to the (log-)quantity of natural gas. Here we detect
a different pattern. In the first treatment period, the point estimate is virtually zero. In
the second, it becomes negative, and more so in the third. The coefficient corresponding to
the last period implies that natural gas consumption decreases around 32% compared to a
counterfactual with no price increase. By visually inspecting the graph, we can see some
evidence of a pre-existing downward trend in the case of gas, which may confound at least
part of the effect.34 We probe the validity of this result with a synthetic diff-in-diff exercise à
la Arkhangelsky et al. (2021), which matches explicitly on the pre-trends. Results, reported
in Appendix G, confirm a similarly large decline.

What explains this delayed response in gas consumption? It could be due to both cohort
and calendar factors. On one hand, earlier treated cohorts might have more time to adjust.
On the other hand, the crisis worsened over time after Russia invaded Ukraine, thus not all
semesters are alike. One of the advantages of our staggered design is that we can disentangle
whether the dynamics of the effect are driven by cohort or calendar factors.

In the lower panel of Figure 6.2 we display average causal effects separately by cohort. In
the second half of 2021, only the “early treated” (black triangles) had already experienced
the energy price shock, but the treatment effect on the quantity of gas is zero. In the first
semester of 2022, the effect is again zero both for the “early treated”, and for the “mid treated”
(red circles), which experienced the shock for the first time in that period. Finally, all cohorts
display a large negative effect in the second half of 2022, which corresponds to the first period

variation in energy intensity, may suffer from measurement error, as noted by Lafrogne-Joussier et al. (2023).
The implicit assumption behind these strategies is that all firms are exposed to the same fluctuation in energy
prices at the same time. Our results cast doubt on this assumption by showing that firms face largely different
prices depending on their contractual arrangement and the exact timing of contract expiration.

33The estimated effects are very similar between firms that cover part of their electricity consumption by
generating their own power from renewable sources, and other firms. Furthermore, they are also very similar
between electricity intensive and other firms; for the former group the results are confirmed by a companion
analysis of monthly electricity consumption from administrative sources (see Appendix J).

34The p-value of the pre-trend test is 0.05.
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since the shock for the “late treated” (blue diamonds), to the second for the “mid treated”,
and to the third for the “early treated”.

Figure 6.2: Natural gas: heterogeneous effects by cohort

(a) Average cost

(b) Quantity

Note: the estimates in the upper and lower panel are from the same regression as in panel (b) and (d) of Figure
6.1 respectively; here they are reported by each cohort separately. Confidence intervals at the 95% level.

Overall, we find that the negative effects in gas consumption are exclusively driven by what
happens in the second half of 2022, while time elapsed since contract expiration does not
matter, as all treated cohorts in a given calendar time period have similar coefficients. The
exact same dynamics emerge in the synthetic diff-in-diff exercise (see Appendix G for cohort-
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specific event-studies). Pooling across cohorts, the imputation methodology by Borusyak
et al. (2021) estimates an average effect on gas consumption in the second semester of 2022
equal to -35%, with confidence interval between -44% and -25% at the 95% level. Magnitude
and precision are virtually unaffected when including firm-semester fixed effects, which
control for firm-specific seasonality.35

Why do firms adjust exclusively in the second half of 2022? First, we check whether the
magnitude of the energy price shock was very different across calendar periods or, in other
words whether the quantity reductions are different, but the demand elasticity is constant.
This does not seem to be the case. The upper panel of Figure 6.2 shows that, despite the
treatment effect on the price is slightly increasing over calendar time, this cannot explain
the heterogeneity in quantity adjustments.36 This conclusion will be confirmed in Section F
where we combine our estimates to derive the price elasticity of demand.

Next, we check whether the expectation on the duration of the energy crisis was somewhat
different in the second half of 2022. Indeed, the 2022 summer was the period of highest market
pessimism about the future evolution of the crisis: the spot price reached its highest peak
(see Figure 2.1), and the futures market was pointing towards a long lasting crisis (see Figure
C.1). A story consistent with our results goes as follows: firms were playing a “wait and see”
strategy in 2021h2, when markets were expecting a short-lived crisis, and again in 2022h1,
when the wholesale gas price shot up after the invasion of Ukraine but rapidly decreased
afterwards. The strategy changed in the summer 2022 amid fears that Europe could be in
short supply of natural gas in the forthcoming winter: presented with expectations pointing
towards a wholesale gas around 200 euro per MWh until mid-2023, many business leaders
decided to take action. The evidence is thus consistent with a “putty-putty” model with
adjustment cost (Pindyck and Rotemberg, 1983; Atkeson and Kehoe, 1999).

6.c Heterogeneity in demand response

Economic theory suggests that the average effect estimated for the second half of 2022 might
hide substantial treatment heterogeneity across treated units, due to the large variation in
energy intensity across firms. In other words, it may be that only some types of treated firms

35This robustness mechanically excludes the “early treated”, for which the second semester is not observed
both before and after treatment.

36The fact that the effect on the firm-level energy price is very similar in the first and second half of 2022 is
only apparently inconsistent with the evolution of the wholesale price depicted in Figure 2.1. In fact, while it is
true that the wholesale price reaches its peak in the third quarter of 2022, in the last quarter it falls back to the
same levels observed in the first semester of 2022. Since consumption is typically lower in the summer months,
the consumption-weighted average wholesale price in the last semester of 2022 is probably not much higher
than in the previous semester.
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are able or willing to scale down energy demand, while others cannot adjust or do not find
it convenient. Assuming Cobb-Douglas production function, we would expect that energy
intensive firms should scale down energy demand the most when its price rises. However,
the production function of energy intensive firms might be better approximated by a Leontief
function, in which case energy intensity would be associated with a smaller elasticity.

To explore this issue, we test whether treatment effects are heterogeneous along the following
covariates: a (self-reported) dummy for whether gas is an essential input in production37,
which can be thought as a proxy for Leontief production function; a gas intensive dummy38;
sector dummies; an EU ETS dummy; and employment in 2021.

To investigate treatment effect heterogeneity in a credible way, we turn to machine learning
(ML) techniques, which have become popular for this aim in causal analysis in the context of
randomized control trials (Haaland and Roth, 2020; Allcott et al., 2020; Alpino et al., 2022). We
are among the first to apply these tools in the context of staggered difference-in-differences
(Hatamyar et al., 2023). In our view, the estimator by Borusyak et al. (2021) is particularly
well suited for this, as it provides a treatment effect estimate for each treated observation.
We can thus use it as an outcome variable and use random forests to find its best predictors,
in the spirit of Athey and Imbens (2016) and Wager and Athey (2018). The advantages of
this approach relative to a more traditional heterogeneity analysis are twofold: a) the quest
for heterogeneity is more efficient and also explores non-linear combinations of the available
covariates; b) the procedure is less prone to bias arising from multiple hypotheses testing.

The ML analysis reveals three key predictors of treatment effect heterogeneity: the dummy
for whether natural gas is essential in the production process; the dummy for gas intensive
firms; the dummy for the EU ETS; the dummy for the food sector (see Appendix H for details
about the methodology and the results). Starting from the first dimension of heterogeneity,
in the second half of 2022 the average treatment effect is equal to -41% among firms for which
gas is not essential, and to -28% for other businesses.39 The result that firms for which gas
is essential reduce its consumption less when its price increases is not surprising, but it is
important for at least two reasons. First, this is a large group, accounting for approximately

37The yes/no question comes from a different Bank of Italy survey (Business Outlook Survey of Industrial and
Service Firms, Sondtel) run in fall 2022 and reads: ”At the beginning of 2022, was gas an essential input for your
firms manufacturing process?". Essential inputs are defined as follows: Inputs are essential when given the
plants and machinery installed and used in the manufacturing process the total or partial lack thereof would
make it impossible to produce the good in the short term.

38The dummy is based on the official definition by the Italian legislation. Gas intensive firms must have
annual consumption above 1 GWh, belong to certain industrial sectors, and have gas intensity (measured as
expenditure for gas natural on sales and/or value added) above certain thresholds.

39Both estimates are significant at the 99% level. The p-value of the test that the two effects are the same is
0.09.
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40% of treated observations. Second, it includes all gas intensive firms.

Coming to the other dimensions of heterogeneity, the average effect is zero among gas inten-
sive firms, slightly positive in the food industry, and -19% among EU ETS firms. However,
it is difficult to draw definitive conclusions about the magnitude of these effects from the
Invind survey, considering the small sample size (respectively 22, 21 and 22 treated firms),
and that almost all of them also declare gas to be an essential input. In order to estimate the
effect among gas intensive firms more credibly, we turn to administrative data from the Fund
for Energy and Environmental Services (CSEA), where we observe gas consumption at the
monthly frequency. After matching this data with the fixed-price contract questions from
Invind, we run an higher-frequency version of our staggered diff-in-diff analysis on more
than one hundred gas intensive firms. Results, reported at length in Appendix I, support the
following findings: a) in the second half of 2022, the effect on gas consumption among gas
intensive firms is -8%, marginally not significant at conventional levels; b) the effect is zero
in the previous periods.

6.d Price elasticity of energy demand

The price elasticity of energy demand is an important parameter which affects quantitatively
the equilibrium responses derived in economic models. In our setting we can compute it by
combining our estimates of the effect of fixed-price contract expirations on (log) prices and
on (log) quantities. Since we only use within-firm variation, our estimate can be described as
a “micro” elasticity. This behavioral response does not take into account the fact that part of
the input substitution process derives from factor reallocation across firms (and sectors), as
opposed to within firms (Bachmann et al., 2022). However, note that credibly identified micro
parameters are a useful disciplining device in macro models when used as target moments
(Nakamura and Steinsson, 2018).

In practice, we follow an IV-LATE approach, where we scale the average treatment effect
estimated in the quantity equation by the average treatment effect estimated in the price
equation.40 Under standard IV-LATE assumptions, we can construct an estimate of the

40An alternative approach could be to regress the individual treatment effects from the price equation on
the individual treatment effect from the quantity equation following Deryugina et al. (2020). However, this
strategy is unfeasible in our application because we construct prices as the ratio between expenditures (in
monetary terms) and physical quantity (see section 3). Thus any measurement error in quantity will translate
in a measurement error of opposite sign in prices, thus yielding a negative correlation by construction. This
issue is reminiscent of the “division bias” discussed by Borjas (1980) in the context of using the ratio of earnings
and hours as a proxy for wage in the regression of hours on wages.
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elasticity � as follows:

� =
4 �̂

@ − 1
4 �̂

? − 1
(4)

where �̂@ and �̂? are the estimates of, respectively, the average treatment effect on the log
quantity and on the log price of energy. We construct standard errors using the delta method
(see Appendix F for details).

Figure 6.3 reports estimates by calendar period for the entire sample and for some selected
sub-samples. We do not report estimates by cohort because we find no heterogeneity along
this dimension.

Figure 6.3: Price elasticity of demand by calendar period

(a) Electricity (b) Natural gas

(c) Natural gas: essential or not (d) Natural gas: intensive or not

Note: the elasticity is computed as 4 �̂
@−1

4 �̂
?−1

where �̂@ and �̂? are the estimates of, respectively, the average treatment
effect on the log quantity and on the log price. Estimates in panel (a) combine effects from panels (a) and (c)
of Figure 6.1; estimates in panel (b), (c) and (d) combine effects from panels (b) and (d). The upper panels plot
average elasticities; the lower panel elasticities for selected sub-samples. Standard errors are constructed using
the delta method. Confidence intervals are at the 95% level.

28



As for electricity, the elasticity is always zero. At first glance, this result appears in contrast
with recent findings related to the pre-crisis years. For example, both Marin and Vona
(2021); von Graevenitz and Rottner (2022) and Fontagné et al. (2023) estimate an elasticity
between -0.4 and -0.5 using French and German data from the periods 1997-2015, 2009-2017
and 1996-2019, respectively. These studies however use comparably smaller shocks. Instead,
Gerster and Lamp (2023) finds electricity elasticities between -0.09 and -0.2 using a large
discontinuity in electricity prices (≈ 30%) faced by very large German firms. Moreover, also
von Graevenitz and Rottner (2022); Fontagné et al. (2023) find that this elasticity is smaller
with larger shocks and in later periods, consistently with our findings.

As for natural gas, our estimated average elasticity is equal to zero in the second half of 2021
and in the first of 2022, and equal to -1.1 in the second semester of 2022.41 This value is higher
compared to the older literature (Labandeira et al., 2017), but broadly in line with the recent
findings of Fontagné et al. (2023) (between -0.9 and -1.2). Furthermore, we find that in the
second semester 2022, gas elasticity is smaller in absolute value for firms for which gas is
essential (-0.5) and for gas intensive firms (-0.03) relative to their complement groups (-2.5
and -1.3). Although these exact values must be taken with caution due to the imprecision
of the estimates, they suggest relevant heterogeneity in gas elasticity across-firms. These
estimates are directly policy relevant. In Section 8 we use these estimates to compute by
how much natural gas equilibrium quantities change after the introduction of a per-unity
quantity subsidies.

6.e Input substitution

In this section we study whether the negative effect on gas consumption in the second half
of 2022 was partly compensated by a larger use of other fossil fuels. To this end, we turn to
administrative data on plants subject to EU ETS, for which we observe consumption of each
fossil fuel separately, although at the annual frequency. We use firm identifiers to match this
data to the Invind survey, which we use to define treatment cohorts. For this yearly design
we must collapse our original half-yearly treatment into a yearly treatment. Thus firms end
up being divided into three cohorts only: those that are treated in 2021, those that are treated
in 2022 and those that are never treated (a pure control group). We provided details on how
we construct these cohorts in Section 3.e. While on average natural gas is the main source
of fossil energy for factories in the EU ETS, they also consume half as much solid fuels (e.g.

41In the case of natural gas, confidence intervals are particularly wide in the first semester 2021. This is due to
the fact that the first-stage is not very strong in that period because the insurance question was not fuel-specific
in the 2021 wave of our survey. For more details on this see Alpino et al. (2023).
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coal). The use of other liquid (e.g. kerosene) or gas (e.g. LPG) fuels is much more limited.

In this section, we rely on an annual panel of plants which begins in 2018 and use outcomes
in levels to facilitate the comparison across fuels. Our test for input substitution is as follows.
First, we use consumption of natural gas as an outcome variable to confirm that our results
in the previous section extend to the EU ETS sub-sample, where 90% of the plants belong to
firms that declare gas to be an essential input. Panel (a) of Figure 6.4 shows that the effect
on gas consumption is indeed negative, building up over time. There is no evidence of a pre
trend.42 The effect is equal to -26 terajoules (Tj) in 2021 and -89 Tj in 2022, respectively -4% and
-14% relative to the 2018-2020 average43, in line with the evidence provided in the previous
sections. Second, we use total fossil energy consumption as an outcome variable, namely the
sum of natural gas plus all other fuels (e.g. coal, LPG, kerosene, lignite, gasoline, etc.). If
plants are able to completely substitute natural gas with other fuels, average treatment effects
would be exactly equal to zero. On the contrary, if plants cannot substitute gas with other
inputs, average treatment effects should be the same as when using natural gas as outcome.
Results, presented in the panel (b) of the same figure, lie between these two extremes. The
profile of the event-study is similar to the previous one, but attenuated in magnitude. The
effects are equal to +27 Tj in 2021 and -56 Tj in 2022; confidence intervals are wider. This
evidence suggests that input substitution is incomplete at best, as treated firms reduce their
total fossil energy consumption to a greater extent, relative to control firms. In other words,
treated firms are unable or unwilling to completely offset the drop in natural gas by using
other fossil fuels. To further explore this issue, we study one by one the consumption of
different types of fuels, to test whether some of these are more of a substitute in the recent
crisis. The event studies (reported at the bottom of Figure 6.4) show that consumption of all
types of fossil fuel (other than natural gas) increases more in the treatment group than in
the control group, but confirms the idea that substitution was incomplete at best. In the case
of other gases, the increase is quantitatively negligible. For liquid fuels the effect is larger
(6 Tj in 2021 and 10 in 2022, both marginally insignificant a the 90% level), but still small
compared to the drop in natural gas (one tenth). In the case of solid fuels, the effect is large,
but it arises one period in advance, and it is larger in 2021 than in 2022, casting doubts on
the validity of the identifying assumptions.44 Overall, even though we can not rule out that
some firms managed to substitute natural gas with other fuels, it is safe to conclude that
input substitution was not the main explanation behind the drop in natural gas consumption

42The p-value of the pre-trend test is 0.47.
43The second effect is statistically significant at the 95% level. Results are quantitatively very similar if we

estimate the model in logs.
44The p-value of the pre-trend test is 0.02.
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Figure 6.4: Input substitution test among EU ETS plants

(a) Natural gas (b) Natural gas + other fossil fuels

(c) Other fossil gas fuels (d) Other liquid fossil fuels (e) Other solid fossil fuels

Note: The figures show average causal effects of the the expiration of a fixed-price contract on different outcomes
in levels. The outcome is reported underneath each event-study. Average causal effects are estimated on the
set of firms belonging to both the Invind and the EU ETS sample. Average causal effects before and after the
treatment are estimated in two separate regressions, using the “imputation” estimator by Borusyak et al. (2021),
as described in Section 5. Confidence intervals are at the 95% level.

identified in this work, at least in case of plants subject to the EU ETS. Note that these
enterprises are different from the average firm and in particular from those for which natural
gas is not essential, which is the group that reduce the most its gas consumption, according
to our results.

Even when restricting the attention to EU ETS firms, one limitation of this exercise is that
in our data we only observe fossil fuels, while substitution might occur via other fuels (e.g.
hydrogen or electricity). As for electricity, as already noted elsewhere in this paper, its price
was increasing in tandem with natural gas during the recent crisis. As a consequence it would
have made little economic sense to substitute one with the other. Moreover, the fact that
electricity demand does not respond to higher prices at the firm level further corroborates
the idea that firms were not substituting gas with electricity. As for hydrogen, despite recent
efforts to promote it in industry at the EU level, its use is still residual in Italian industry.45

45According to the Italian National Strategy for Hydrogen the share of hydrogen in final energy consumption is
at 2% in the country and less than 1% in “hard to abate” industries like chemicals or refineries.
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Finally, our analysis does not exclude the possibility of substituting energy by importing
energy intensive intermediate goods from outside Europe, a channel emphasized by Moll
et al. (2023). Unfortunately, at the moment we lack data to test this hypothesis.

7 Effects on output prices, production and profit margins

When firms cannot substitute away from more expensive inputs, they have two other options
at their disposal. On the one hand they could reduce the quantity of output they produce;
on the other hand they could pass on some of the cost increases to consumers via higher
prices. The combination of lower output, higher prices, together with input substitution,
will be reflected in their profit margins.

In this section we study these margins of adjustment by exploiting a longer yearly panel
of firms that answered the Invind survey over the 2018-2022 period. Since not all firms
are interviewed in all years, and do not answer to all questions, we are forced to use an
unbalanced panel of firms. As detailed in Section 3.e and similarly to Section 6.e, we collapse
our original half-yearly treatment into a yearly treatment. Thus firms end up being divided
into three cohorts only: those that are treated in 2021 (corresponding to the "early treated"
in the previous analysis), those that are treated in 2022 (corresponding to the "mid treated")
and those that are never treated (a pure control group). Aside from this, the regression
model is exactly the same as in Section 5. We consider three outcomes at the firm level
that are available in the Invind survey: the yearly growth rate in the prices of goods sold46;
the average degree of plant capacity utilization, defined as a percentage of the maximum
output attainable with the given capital47; and a dummy for whether the profit margin is
strictly positive. The yearly sample we use in this analysis is similar to the half-yearly one
used in previous sections. We detect no appreciable difference both in terms of sectoral and
geographical composition. Firms in the yearly sample have a lower probability of declaring
that gas is an essential input (37% vs 54% in the half-yearly sample) and of being energy
intensive firms, according to the Italian legislation (21% vs 30% in the half-yearly sample).
For completeness, in Table A.2 of Appendix K we report summary statistics.

Event-studies are depicted in Figure 7.1 while estimates by calendar year are reported in
Table 7.1. Table 7.2 reports heterogeneous treatment effects for year 2022 according to the
same categories used in the previous sections.

46The level of prices is not available in the Invind survey
47The survey records also changes in capacity relative to the previous year; we adjust our outcome to account

for this to get a good measure of physical output.
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Figure 7.1: The effect of energy price-protection lifting on prices, capacity utilization and profit

(a) Change in price (%) (b) Capacity utilization (%) (c) Positive profit (0/1)

Note: The figures show average causal effects of the expiration of a fixed-price contract on different outcomes,
reported underneath each event-study. Samples are different across the three panels. Average causal effects
before and after the treatment are estimated in two separate regressions, using the “imputation” estimator by
Borusyak et al. (2021), as described in Section 5. Confidence intervals are at the 95% level.

Starting with the first outcome, we find that when treated firms see their fixed-price contract
expire, they increase their final price less than the control group. The effect is equal to -2.7
percentage point, not significant at conventional levels, and it is entirely driven by what
happens in 2022. Note that in that year, the average price increase was around 11 per cent,
and no firms decreased its price. So our results suggests that, amid generalized upward
price pressure, firms exposed to energy price shock did not increase their price more than
other businesses. How to rationalize this finding? First, there is mounting evidence that
firms’ price updating decisions do not depend much on idiosyncratic cost shocks, but rather
on rivals shocks (via strategic complementarities) and on market-wide cost shocks (Amiti
et al., 2019; Muehlegger and Sweeney, 2022; Duprez and Magerman, 2018). If these models
of price formation are a good representation of reality, our reduced form approach is not
appropriate to gauge the the effect of the energy crisis on inflation, because it can only
identify partial equilibrium effects. Second, even if idiosyncratic shocks matter, identifying
their effect for the average firm is quite challenging because the share of energy cost on firms’
variable cost is very low on average Alpino et al. (2022). Indeed, our heterogeneity analysis
reveals that when focusing on firms for which energy represents a larger fraction of their
costs (gas intensive and EU ETS firms), the treatment effect is positive, large and significant.
In this respect, our findings are in line with Lafrogne-Joussier et al. (2023), who estimate the
pass-through of energy shocks on producer prices in the recent crisis. They find that, due the
relatively small share of energy in firms’ variable costs and despite substantial pass-through
of positive shocks, the recent energy price surge only moderately impacted manufacturing
inflation.
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Table 7.1: Average treatment effects by calendar year

Annual price change (%) Capacity utilization (%) Profit>0 (0/1)
(1) (2) (3)

2021 0.58 0.02 -0.00
(1.20) (1.75) (0.03)

2022 -2.73 -1.89 -0.10∗∗∗
(1.66) (2.52) (0.04)

N 2887 3655 3464

Note: the table reports point estimates and standard errors of the treatment effects
by calendar year from the same regressions as in Figure 7.1.

Coming to the second outcome, we estimate that upon contract expiration treated firms
reduce capacity utilization by less than 2 percentage points in 2022. The drop is quite small,
considering that capacity utilization is on average around 80 per cent in the sample years.
We do not find evidence of treatment effect heterogeneity. How to rationalize the the limited
responsiveness of physical output with the large drop in input identified in the previous
sections? We believe there are at least three non mutually exclusive explanations. First,
natural gas only drops in the second semester, while capacity utilization refers to the average
over the year. Second, our measure of capacity utilization might understate changes over
time. Lacking hard data to answer this question, some respondents might be tempted to
provide the same figure as in the previous year. Third, firms might be able to substitute
natural gas might other non-energy inputs, and keeping output unchanged. Unfortunately,
our data does not allow us to discriminate between these possibilities.

Finally, we find that being exposed to the energy shock reduce the probability to have a
positive profit margin by 10 percentage points in 2022. The effect is sizable, considering that
over our sample period approximately 80 per cent of firms declare to have positive profits.
The drop is widespread with the exception of the EU ETS firms, for which the effect is zero;
note that this is the group for which we estimated the largest positive effect on the growth of
final prices.

34



Table 7.2: Heterogeneous treatment effects in 2022 by type of firm

(a) Annual price change (%)

Gas essential Gas intensive EU ETS Electricity intensive
(1) (2) (3) (4)

No -4.47∗∗ -3.34∗∗ -3.44∗∗ -4.21∗∗
(1.75) (1.68) (1.67) (1.68)

Yes 1.81 9.09∗∗ 18.29∗∗∗ 2.68
(1.90) (3.89) (5.06) (2.15)

P-value equality test 0.00 0.00 0.00 0.00

(b) Capacity utilization (%)

Gas essential Gas intensive EU ETS Electricity intensive
(1) (2) (3) (4)

No -2.05 -1.93 -1.88 -1.90
(2.64) (2.53) (2.53) (2.60)

Yes -1.06 -1.25 -2.21 -1.85
(2.98) (4.27) (3.68) (2.94)

P-value equality test 0.66 0.85 0.91 0.98

(c) Profit>0 (0/1)

Gas essential Gas intensive EU ETS Electricity intensive
(1) (2) (3) (4)

No -0.11∗∗∗ -0.10∗∗∗ -0.10∗∗∗ -0.10∗∗
(0.04) (0.04) (0.04) (0.04)

Yes -0.12∗∗ -0.09 0.00 -0.11∗
(0.05) (0.09) (0.07) (0.06)

P-value equality test 0.96 0.95 0.12 0.82

Note: the table reports point estimates and standard errors of the treatment effects
in 2022 by different types of firms from the same regressions as in Figure 7.1. The
outcome variable is reported above each panel. The row "No" refers to the firms for
which the dummy on top of each column is switched off; the row "Yes" refers to the
firms for which the dummy on top of each column is switched on. The last row reports
the p-value of the test that the two treatment effect in the column are equal to each
other.
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8 Policy implications

Our results bear policy implications for the design of support measures aimed at firms during
energy crises. Such tools were popular in the EU during the recent 2021-22 crisis. According
to recent estimates by Bruegel, since March 2022 EU governments allocated around e 670
billion to help businesses face energy shocks (McWilliams et al., 2024). In spite of their
popularity, several economists were concerned that these policies would exacerbate the
crisis if designed in such a way to reduce the marginal price of energy faced by firms. In fact,
this would amount to subsidize the demand for energy thus reducing the incentive to save
it at a time of very short supply (Gros, 2022; Signorini, 2022).

Unintended upward pressure on energy demand could be avoided if policies were targeted to
firms with a demand elasticity close to zero. In the paper we show that firms’ price elasticity
of demand was close to zero for electricity, while demand was somewhat more responsive in
the case of natural gas, although only in the second half of 2022. Our heterogeneity analysis
highlights an important distinction in the case of gas. The price-responsiveness is almost
entirely explained by firms for which gas is not an essential input. To the contrary, the
remaining group, which also includes almost all gas-intensive firms, displays an elasticity
close to zero.

In order to avoid or mitigate unintended demand responses, it follows that support measures
should target firms for which gas is an essential input or, alternatively, gas intensive firms,
which is an observable characteristic. In the Italian context, the subsidies were initially
targeted to energy intensive firms for both electricity and natural gas consumption, but they
were expanded to all firms later in the crisis. Our results suggest that such expansion in case
of natural gas consumption might have caused some upward pressure on demand.

To get a sense of the quantitative magnitude of these policy implications in the case of natural
gas, we follow Deryugina et al. (2020) in presenting some simple calculations calibrated to the
Italian context. Between 2015 and 2019, industrial gas consumption in the second semester
of the year was equal to 6,700 million of Standard Cubic Meters (SCM) on average (source:
SNAM, the network operator); the average retail price in the business sector was equal to
1.35 euro per SCM in the second half of 2022 (source: Eurostat).48 Assuming for simplicity
that the market for industrial gas deliveries is perfectly competitive, the introduction of a
per-unit subsidy B on the price % would result in an increase of the equilibrium quantity &

48Eurostat computes this price as the average cost per unit of energy net of taxes. As such, this price already
include government aid in the form of reduced taxes and fees, but does not include the subsidy which took the
form of a tax credit.
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which depends on the (absolute value) of the demand &( and supply &� elasticities:
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Figure 8.1: Effect of a subsidy on equilibrium gas consumption

Note: The figure shows the percentage increase in the equilibrium quantity of gas purchases induced by a 50
cent subsidy for different values of demand and supply elasticities. It is calculated according to the formula
in (5) and scaled by the baseline quantity; & is set equal to 6,700 million of Standard Cubic Meters (SCM) and
% to 1.35 euro per SCM. Vertical dotted lines are drawn in correspondence of some values of the elasticity of
demand estimated in the paper: 0.5 (firms for which gas is essential), 1.1 (average) and 2.5 (firms for which gas
is not essential.

Supply of gas is usually considered quite inelastic in the short term, but there is scarce
evidence regarding its magnitude. As a first exercise, we assume a very low supply elasticity.
In particular, we follow Albrizio et al. (2022) and use the value &( = 0.06, as estimated by
Krichene (2002). In this case, if one were to use our average estimates of the demand elasticity
(&� = −1.1), a 50 cent price subsidy would increase the equilibrium quantity by 141 million
of SCM (2%) in the second half of 2022. Such effect would be only marginally lower using the
value for firms for which gas is essential (&� = −0.5) and marginally higher using the value
for firms for which gas is not essential (&� = −2.5) (red line in Figure 8.1). Intuitively, in this
case the supply curve is so inelastic that producers can cash in a great share of the subsidy
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without increasing quantities much and irrespective of the demand elasticity.

As a second exercise, we consider a slightly higher value of the supply elasticity, which is
a more sensible assumption in our context. Italy has a very developed natural gas infras-
tructure: three LNG terminals and five pipelines connecting it to several producers other
than Russia (Azerbaĳan, Algeria, Lybia and Northern Europe). In 2022, to the surprise of
many commentators, Italy managed to secure new large gas delivery contracts from these
countries; the annual increase in import from these suppliers (14.8 billion of SCM; +34%)
almost offset the drop in imports from Russia (15 billion of SCM). These are large numbers,
roughly equal to the annual consumption of the Italian industrial sector. Thus, in our second
exercise we assume an higher supply elasticity, namely &( = 0.2. In this case, how large
is the demand elasticity becomes important (see blue line in Figure 8.1). When assuming
&� = −0.5, the subsidy-induced increase in quantity is equal to 350 million of SCM (+5%),
while when assuming &� = −2.5, the increase is equal to 460 million of SCM (+7%).49

9 Conclusions

We provide evidence on the effect of large energy price shocks on firms. We do so with a
novel identification strategy based on the staggered expiration of fixed-price energy contracts,
which expose some businesses to spikes in energy prices sooner rather than later. In our
difference-in-differences design, we estimate that during the 2021-22 crisis average unitary
costs for exposed firms increased up to 45% and 30% for electricity and gas respectively.
Despite this sizeable shock, the demand adjustment is relatively small. Firms do not cut
electricity consumption, and reduce natural gas only in the second half of 2022 (-35%).
Furthermore, this drop is very heterogeneous across firms. In particular it is smaller for
those declaring natural gas to be an essential in their production process, which include gas
intensive firms that account for 20% of national consumption.

Additional evidence suggests that the drop in gas consumption was not fully compensated
by substitution with other inputs, and that, as a consequence, output fell somewhat. Further-
more, we find that the idiosyncratic energy price cost shocks that we identify do not induce
a significantly higher increase in the price of final output and decreases the probability of
reporting positive profits, in a context of generalized upward price pressure.

49Notice that in presence of heterogeneous elasticities, it is not clear which one should be used in the
calculation, as it depends on whether the marginal consumer is a firm for which gas is essential or not.
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Appendices

Appendix A Information on the retail energy markets

Electricity In 2021, all firms with more than 50 employees, that is those analyzed in this
paper, had to purchase electricity in the liberalized market. Most likely a minority of firms
in our sample have a low-voltage connection and thus must be offered the standardized
contracts designed by the authority. According to ARERA, in 2021 45% of all business
customers were on a fixed-price contract, while the rest were on a variable price-contract,
linked to the fluctuation of the wholesale price or of other price indexes.50 On average in
2021 the unitary cost for energy for outstanding (both newly signed and signed in previous
years) fixed-price contracts was 30% lower than those on a variable price contract. In 2022,
the share of business customers on a fixed-price contract was basically unchanged (47%); in
that year, they enjoyed a 80% lower unitary cost compared to variable-price contracts, which
were completely exposed to the increase in wholesale prices (ARERA, 2023). Notice that
fixed price contracts were continuously supplied by some retailers throughout the crisis, at
least for low-voltage connection (for which ARERA publishes data). However, fixed price
contracts for sale became rarer, and, of course, more expensive during the crisis. The average
unitary cost for outstanding (both newly signed and signed in previous years) fixed price
contracts (both standardized and not) increased from an average of 91 euro/MWh in 2021 to
171 the next year.

Natural gas All firms must purchase natural gas on the free market; those with an annual
consumption below 200,000 standard cubic meters - approximately 33% in our sample -
must be offered the standardized contracts. In 2021, business customers were almost evenly
split between those on a fixed price contract (44%) and those on a variable price contract
(56%) (ARERA, 2022). On average the unitary cost of energy was 30% higher in the latter
case relative to the former; the difference is driven by the increase in wholesale price that
materialized over the second semester. In 2022, the share of business customers on a variable
contract increased to 63% (ARERA, 2023). The spread in cost between the two types of
contracts increased to 50%, due to the further stark increase in the wholesale price. In the
case of natural gas, the number of new fixed price contracts for sale on the free market
dropped to less than 5 in the first semester 2022, and to zero in the second. However, firms
with an annual consumption below 200,000 standard cubic meters could still purchase one

50These numbers do not include large energy-intensive firms that typically negotiate ad hoc contracts directly
with one retailer through their energy manager.
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of the fixed price standardized contracts. The average unitary cost for outstanding (both
newly signed and signed in previous years) fixed price (both standardized and not) contracts
increased from an average of 34 cents/cubic meter in 2021 to 77 the next year, driven my new
more expensive contracts.

Appendix B Questionnaires

Figure B.1: Survey questions for the energy section

(a) 2021 wave

(b) 2022 wave

Note: The figures displays the original questionnaires of the energy section of the Invind survey, both in the 2021 and 2022 wave.
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Appendix C Background pictures

Figure C.1: Expectations on wholesale gas price (TTF) implied by futures

Note:The figure shows futures curve for the Title Transfer Facility (TTF) price at three different points in time:
September 2021 (in blue), March 2022 (in red) and September 2022 (in green). The first point of each line is the
spot price at that date.
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Figure C.2: Fossil fuel energy mix for firms in the matched EU ETS - Invind sample

Note: The figure displays the average consumption of different fossil fuels (measured in Terajoules, TJ) for firms
belonging to the matched Invind-EU ETS sample.
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Appendix D Validation of survey answers

In this Appendix we detail the validation procedure implemented to check the quality of
the Invind survey data. Considering that respondents might not be familiar with physical
units of measurement, we verify whether quantities and costs of gas and electricity assume
plausible values. To this end, we implement the algorithm described below.

First, we exclude from our sample of interest the firms that did not reply to all the energy-
related questions. Note that consumed quantities must be strictly positive to be able to
compute a valid retail price of energy inputs.

We then rely on two references to cross-check the plausibility of the Invind replies. In fact,
given that respondents might not be familiar with physical units of energy, excessively high
or low figures might indicate that respondents got the order of magnitude wrong, e.g. kWh
instead of MWh. Hence, we recover the type of systematic mistake made for those replies
taking on implausible values. To this end, we resort to two criteria based on year- and
semester-specific parameters, and defined for electricity and natural gas separately.

We compute the average unitary price paid by firms for each semester and compare it with
the corresponding average price recorded by Eurostat for the Italian market. The Invind and
the Eurostat prices are constructed similarly, as they both include levies and taxes. However,
Eurostat includes all non-household consumers, while we only have industrial firms with at
least 50 employees. Therefore, we adopt a loose criterion and flag only those observations
in which the unit price is not included in a price range defined as half the minimum price
and double the maximum of the reference Eurostat statistics across consumption classes and
semesters.51 We employ a second criterion52 based on the examination of the ratio between
energy costs and turnover. We flag observations above and below the 99th and 1st percentile
of the distribution53, respectively. These correspond to cost-turnover ratios above 50% and
below 0.1%, respectively. Combining the two criteria, we identify 6 error categories for the
firm-level replies on electricity and 4 categories for the ones on natural gas (Table D.1). This
exercise is performed for both semesters separately. In 18.7 and 2.8% of the electricity-related
replies and 21 and 6.4% of the gas-related replies in the 2021 and 2022 wave respectively,
we observe a consistent mistake across semesters and rescale the values accordingly. Only

51In light of the upward trend in prices over time, While the parameter of the maximum price is semester-
specific, the lower-bound of the price distribution is considered constant over time and equal to half the
minimum price reported by Eurostat in the first semester of 2021.

52Given that our unit prices in the Invind data could be out of the sensible range because of mistakes in filling
in total expenditure (i.e the numerator) and/or the consumption quantity (i.e. the denominator), we need two
criteria to reconcile implausible unitary prices with specific errors in the units of measurement.

53The percentiles are computed over the unweighted set of firms with strictly positive costs.
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firms replying with (possibly rescaled) valid values in all 4 semesters are part of the final
estimation samples.

Next, we examine the coherence of the stated quantities against administrative data collected
by CSEA. This latter record is available only for the subsample of energy intensive firms
(energivore and gasivore). Whenever the delta between the two figures differ by more than
35% in absolute value for at least one semester, we conservatively drop the firm from the
estimation sample. The scatterplots of Figure D.1 are reassuring insofar as both the non-
manipulated and the manipulated quantities lie very close to the 45-degree line, indicating
that our data match administrative records pretty well and that our correction alghrithm
works well.

As regards natural gas quantities, and limited to firms with plants subject to the EU ETS, we
can perform the same check also on the administrative records collected by ISPRA. In this
exercise though, firms are excluded from the sample only in case the reported quantities are
smaller than the ETS ones. On the contrary, larger values are compatible with multi-plant
firms having lines of production not emitting CO2 emissions.

These two steps combined lead to 45 and 28 firms eliminated from the electricity and gas
estimation sample, respectively.
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Table D.1: Validation of data quality: units of measurement in quantities and expenditure

(1) (2) (3) (4) (5) (6)
Cost-share criterion Price-range criterion Expenditure Quantity Prevalence

2021 2022

Panel A: Natural gas

3 3 000 e SCM 70% 90%
7 - upper tail 7 - higher price (000-fold) e SCM 3% 0%
3 7 - higher price (000-fold) 000 e 000 SCM 18% 4.9%
3 7 - higher price (million-fold) 000 e million SCM 0% 0.7%
7 - lower tail 7 - lower price Million e ’000 SCM 0% 0.8%

Residual observations (dropped) 9% 3.6%
Total 100% 100%

Panel B: Electricity

3 3 000 e Mwh 71.7% 94.2%
3 7 - lower price 000 e Kwh 14.3% 1.9%
7 7 - higher price e Mwh 2.7% 0.1%
7 3 e Kwh 2.3% 0.1%
3 7 - higher price 000 e Gwh 0% 0.7%
7 - lower tail 3 Million e Gwh 0% 0.3%
7 - lower tail 7 - lower price Million e Mwh 0.1% 0%
7 - lower tail 7 - lower price Million e Twh 0.1% 0%

Residual observations (dropped) 7% 2.8%
Total 100% 100%

Note: The table presents the result of the data validation procedure. As respondents might be unfamiliar with physical units of measurement,
we reviewed the plausibility of the expenditure and quantity replies, separately for gas (Panel A) and electricity (Panel B). Depending
on whether unitary prices satisfy two reference criteria (Column 1 and 2), observations are sorted into mutually exclusive compilation
mistakes. In more details, the two checks allow us to determine the univocal units of measurement used by the respondent (Column
3 and 4) compatible with the mistake category. This exercise is performed for both semesters. In case we observe a consistent mistake
across semesters, we rescale the values with the goal of harmonising all observations in terms of thousands of euro for expenditure,
and Mwh and SCM for purchased quantities of electricity and natural gas, respectively. We operate this correction in 18.7 and 2.8% of
the electricity-related replies and 21 and 6.4% of the gas-related replies in the 2021 and 2022 wave, respectively (Column 5 and 6). The
distributions are unweighted.

7



Figure D.1: Consistency with other data sources

(a) Electricity consumption in 2021 (b) Natural gas consumption in 2021

(c) Electricity consumption in 2022 (d) Natural gas consumption in 2022

(e) Gas consumption in 2021 (f) Gas consumption in 2022

Note: The figures show the consistency between data sourced via the Invind survey and quantities of electricity and natural gas recorded
in administrative data for a sub-sample of firms belonging to the energivore and gasivore lists (panel (a) and (b) for 2021, and panel (c) and
(d) for 2022) and to the EU ETS (panel (e) and (f)).
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Appendix E Non-response bias

In this section we examine the robustness of our findings to a correction method called
“inverse probability weighting”(Wooldridge et al., 2002; Stantcheva, 2022). This method is
commonly used to address differential attrition by utilizing the relationships among observed
covariates to re-weight the observed data to approximate the distribution in the full data set
(Stantcheva, 2022; Glynn and Quinn, 2010). In practice, we run our baseline specification
weighting observations by the inverse of the probability of being part of the respective
estimation sample. The latter probability is obtained as the propensity score from estimating
by logit equations 6 and 7, where -8 include covariates measured at baseline.54.

1(Electricity sample8) = -′
8�

4 + �8 (6)

1(Gas sample8) = -′
8�

6 + �8 (7)

Figure E.1 graphically indicates that for electricity and gas samples separately, the support
of the propensity score overlaps between out of sample and in sample observations. We
test and verify the balancing of covariates within bins (or “blocks”) of the propensity score
following Becker and Ichino (2002).

In Figure E.2, we compare our baseline results with those obtained by rerunning the same
specification with inverse probability weighting. The two sets of results are remarkably
similar, mitigating concerns about item non response biasing our results.

Figure E.1: Common support of propensity score

(a) Natural gas sample (b) Electricity sample

Note: The figures show the distribution of the propensity score of out of sample and in sample observations.

54We include total sales, total investment, dummies for size class, sector dummies, macroregion dummies,
a dummy for being in the EU ETS, a dummy for being an electricity intensive firm, a dummy for being a gas
intensive firm
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Figure E.2: Inverse-probability-weighted estimates

(a) Price of natural gas (b) Price of electricity

(c) Gas demand (d) Electricity demand

Note: The figures show average causal effects of the expiration of a fixed-price contract on the average costs of electricity and natural gas
(panels (a) and (b)) and the corresponding demanded quantities (panels (c) and (d)). The charts compare our baseline results (in black)
with those obtained by rerunning the same specification with inverse-probability weighting (Wooldridge et al., 2002; Stantcheva, 2022).
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Appendix F Inference of elasticity

We derive the standard errors of the IV-style elasticity using the delta method. The elasticity
of interest is:
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is the 2x2 variance covariance matrix obtained using the formula in Theorem 3 in Borusyak
et al. (2021).
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Appendix G Synthetic diff-in-diff

Motivated by the possibility of underlying pre-trends in the event study graphs presented in
the main body of the paper, we probe the robustness of our results with an alternative design
that explicitly matches on the path of pre-treatment outcomes: the synthetic difference-in-
differences (SDID) estimator (Arkhangelsky et al., 2021).55

We follow the procedure outlined in Clarke et al. (2023) to implement the SDID method

55Note that this estimator requires a balanced sample and does not allow weights. When we replicate the
staggered diff-in-diff analysis without weights the results are virtually unchanged.
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in the staggered case and conduct valid bootstrap inference. Figure G.1 reports the event-
study for electricity and in Figure G.2 for natural gas. We present the results for the three
treatment cohorts separately. In all of the three cases, the donor pool comes from the pure
control group. Naturally, the pre-trend matching uses more pre-treatment period for the
“late treated” than for the “mid treated” and “early treated”, as we only have four periods at
disposal.

The estimates of the treatment effects are very similar to those estimated in the staggered diff-
in-diff. This shows that our results are robust to a relaxation of the parallel trend assumption.
Furthermore, the cohort-specific event studies for prices corroborates our coding of the key
treatment variable �8 is correct, because price increases exactly at the time of expiration of
the fixed price contract signed in early 2021. In addition, as in the staggered diff-in-diff, all
of the three cohorts display very similar treatment effects. Thus, this exercise confirms that
the results are not driven by any specific cohort. Finally, the synthetic diff-in-diff shows that
the negative treatment effect on the quantity of gas is driven only by what happens in the
second half of 2022.
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Figure G.1: Synthetic diff-in-diff estimates of the effect of price-protection lifting on retail electricity
price and quantities of electricity

(a) Price of electricity for “early treated” (b) Quantity of electricity for “early treated”

(c) Price of electricity for “mid treated” (d) Quantity of electricity for “mid treated”

(e) Price of electricity for “late treated” (f) Quantity of electricity for “late treated”

Note: The figure shows average causal effects of price-protection lifting according to the SDID method in the
staggered case. The outcome variable is always in logs. Bootstrapped confidence intervals are at the 90% level.
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Figure G.2: Synthetic diff-in-diff estimates of the effect of price-protection lifting on retail gas price
and quantities of gas

(a) Price of natural gas for “early treated” (b) Quantity of natural gas for “early treated”

(c) Price of natural gas for “mid treated” (d) Quantity of natural gas for “mid treated”

(e) Price of natural gas for “late treated” (f) Quantity of natural gas for “late treated”

Note: The figure shows average causal effects of price-protection lifting according to the SDID method in the
staggered case. The outcome variable is always in logs. Bootstrapped confidence intervals are at the 90% level.
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Appendix H Effect heterogeneity with machine learning

Our focus is on the effect on gas consumption in the second semester of 2022. We use random
forests in the spirit of Athey and Imbens (2016) and Wager and Athey (2018). First, we split
the treated observations in two random subsamples: a learn subsample (60 per cent of the
overall sample) and a test subsample (40 per cent). Second, we build a forest of 5,000 trees
using the learn subsample only. Each tree can pick only a random half of the considered
covariates. Third, we use the forest to predict treatment effects out-of-sample in the test
sample. Finally, we test whether machine learning (ML) predictions carry over to the test
sample. The sample splitting approach ensures that overfitting does not drive our results.

Figure H.1 plots the distribution of individual treatment effects as estimated by the Borusyak
et al. (2021) imputation method (in blue), as predicted by ML in sample (black) and out of
sample (red). The point estimate is always very close to -0.45 across the three distributions.56
The blue distribution is very dispersed. However note that this variation could be due to
treatment effect heterogeneity (along observables or unobservables) or due to noise (Borusyak
et al., 2021), as individual treatment effects contain the error term &8 9C in equation 3. The
distribution of in-sample-ML-predicted treatment effects (in black) is much less dispersed,
but still displaying economically relevant heterogeneity and including values around zero
for some observations.57 The distribution of out-of-sample-ML-predicted treatment effects
(in red) is similar to the black one, but even more compressed, with the difference plausibly
due to overfitting in the in-sample predictions. Still, the red distribution has a support going
from -1 and zero; this means that the forest predict that some treated firms would decrease
gas consumption by as much as 60 per cent, while others would not change it at all.

In order to understand which observables predict heterogeneity in treatment effects, and
in which direction, we first regress the in-sample-ML-predicted treatment effect on each
covariate separately (see Table H.1). The forest predicts that firms having lower-than-average
treatment effects (i.e. a small gas demand reduction) are concentrated: in the food sector;
in the chemicals-pharmaceutical-rubber sector; firms declaring natural gas to be an essential
input; those subject to the EU ETS; the gas intensive ones according to the Italian state aid
regulation. Firms having higher-than-average treatment effects (i.e. a large gas demand
reductions) are those in the wood and paper industry. The results are confirmed in the
test sample when using as an outcome variable the out-of-sample-ML-predicted treatment

56Note that here we refer to the point estimates, and not their exponential transformation that we comment
in most of the paper.

57This suggests that the extreme values in the blue distribution are probably due to noise, although we cannot
rule out that they are due to treatment effect heterogeneity along unobservables.
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Figure H.1: Distribution of treatment effects on gas demand in 2022h2

Note: The figure shows the distribution of individual treatment effects in 2022h2. The outcome is natural gas
consumption.

effects (Table H.2). In order to test whether these results represent true heterogeneity and
not a statistical fluke due to overfitting, we estimate the same regressions in the test sub-
sample using as an outcome variable the estimates of the treatment effect obtained with the
Borusyak et al. (2021) method. If treatment effect heterogeneity is real, we would expect to
see the same signs and similar coefficients in these data, because the Borusyak et al. (2021)
estimates in the test sample were never used to train the forest. Results are presented in
Table H.2. For some covariates, signs are different and/or coefficients are greatly attenuated,
but some of the predictions are confirmed out-of-sample, both in terms of sign and size of
the coefficients. In particular, four (non mutually exclusive) groups of observations display
lower gas adjustment than the average: firms in the food industry, firms declaring that gas
is an essential input, firms in the EU ETS, and gas intensive firms. We take this as evidence
that treatment effect heterogeneity exists in this context along these covariates.
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Table H.1: Characterizing in-sample predictions of treatment effect heterogeneity

in-sample ML predictions of treatment effects
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Food (0/1) 0.384∗∗∗
(0.03)

Textiles appareal (0/1) -0.0847
(0.06)

Chem., pharma., rubber (0/1) 0.0953∗∗
(0.04)

Non-metallic minerals (0/1) -0.0825
(0.14)

Metalworking (0/1) -0.0324
(0.04)

Wood, paper, furniture (0/1) -0.195∗∗∗
(0.06)

Water, waste (0/1) -0.109
(0.12)

Nat. gas indispensable (0/1) 0.157∗∗∗
(0.04)

Employment (heads) -0.0000121
(0.00)

EU ETS (0/1) 0.135∗∗∗
(0.05)

Gas intensive (0/1) 0.169∗∗∗
(0.04)

R2 0.21 0.01 0.02 0.00 0.00 0.08 0.01 0.11 0.00 0.03 0.04
N 144 144 144 144 144 144 144 144 144 144 144

Note: OLS regressions in the learn sub-sample. The outcome variable is the treatment effect (on gas consumption
in 2022h2) as predicted by ML. Standard errors in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01.
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Table H.2: Characterizing out-of-sample predictions of treatment effect heterogeneity

out-of-sample ML predictions of treatment effects
(1) (2) (3) (4) (5) (6)

Food (0/1) 0.307∗∗∗
(0.04)

Chem., pharma., rubber (0/1) 0.0916∗
(0.05)

Wood, paper, furniture (0/1) -0.205∗∗∗
(0.06)

Nat. gas indispensable (0/1) 0.153∗∗∗
(0.04)

EU ETS (0/1) 0.126∗∗∗
(0.03)

Gas intensive (0/1) 0.141∗∗∗
(0.04)

R2 0.16 0.03 0.08 0.12 0.02 0.03
N 107 107 107 100 107 107

Note: OLS regressions in the test sub-sample. The outcome variable is the treatment effect (on gas consumption
in 2022h2) as predicted by ML. Standard errors in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01.
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Table H.3: Testing treatment effect heterogeneity in the test sample

treatment effects estimated using BJS
(1) (2) (3) (4) (5) (6)

Food (0/1) 0.223∗
(0.12)

Chem., pharma., rubber (0/1) -0.215
(0.14)

Wood, paper, furniture (0/1) 0.0503
(0.22)

Nat. gas indispensable (0/1) 0.341∗∗∗
(0.13)

EU ETS (0/1) 0.231∗∗∗
(0.07)

Gas intensive (0/1) 0.313∗∗∗
(0.11)

R2 0.01 0.02 0.00 0.08 0.01 0.02
N 107 107 107 100 107 107
Standard errors in parentheses
∗ ? < 0.10, ∗∗ ? < 0.05, ∗∗∗ ? < 0.01

Note: OLS regressions in the test sub-sample. The outcome variable is the treatment effect (on gas consumption
in 2022h2) as estimated by the imputation methods by Borusyak et al. (2021).
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Appendix I Gas intensive firms

We analyze administrative data from CSEA where we observe monthly natural gas con-
sumption by gas intensive firms, as defined by the Italian legislation, for years 2019, 2021 and
2022.58 Gas consumption is measured at the gas meter level and transmitted to CSEA from
the retailers; thus measurement error should be very small. We match our data to the Invind
survey to obtain information on fixed-price contracts, and restrict ourselves to the period
2021-2022 for which we have more observations. Our final matched sample is a balanced
panel of 126 firms. In order to avoid having cohorts with very few firms, we collapse the
data at the quarterly frequency and define cohorts of treatment as follows:

�8 =



2021@3, if �2021 = 0 and � 60B,2022 = 0

2022@1, if �2021 = 1 and and 0 ≤ <
60B

8
< 3

2022@2, if �2021 = 1 and and 3 ≤ <
60B

8
< 6

2022@3, if �2021 = 1 and and 6 ≤ <
60B

8
< 9

2022@4, if �2021 = 1 and and 9 ≤ <
60B

8
< 12

0, if �2021 = 1 and <
60B

8
= 12

(8)

Going from the earliest treated to the latest treated, cohorts have the following number of
firms: 38, 31, 4, 4 and 14. The pure control group includes 35 firms. The outcome variable
is the log consumption of natural gas. Data displays strong seasonal patterns which are
heterogeneous across firms. Thus we present results from two specification: our baseline
(as in equation (3)) and an augmented version which includes firm-by-quarter fixed effects.
In the latter model, the earliest treated cohort drop out because the last two quarters are
not observed both before and after treatment. We use the Borusyak et al. (2021) estimator
without any weights.

Figure A.1 presents the event-study graph from the two specifications, baseline in panel (a)
and augmented in panel (b). There is no evidence of a pre-trend. Treatment effects are small
and close to zero for the first four quarters. In the last two quarters, the baseline model shows
a drop with very large standard errors, while the augmented model cannot estimate these
two effects.

58See Ministerial Decree of the Ministry for the Green Transition n.541 of 2021.
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Figure A.1: Event-study estimates for the log quantity of gas among gas intensive firms

(a) Baseline model

(b) Augmented model with firm-by-quarter fixed effects

Note: The figures show average causal effects of the expiration of a fixed-price contract on the log quantity of
natural gas. Average causal effects before and after the treatment are estimated in two separate regressions,
using the “imputation” estimator by Borusyak et al. (2021).

To test for the presence of the heterogeneity across calendar periods, we compute treatment
effects by quarter and by semester. The results, reported in Table A.1, are qualitatively in line
with the evidence from Invind presented in the main body of the paper. Treatment effects are
close to zero until mid-2022; afterwards they are negative. In our augmented specification,
the coefficients imply a 8% reduction in the second half of 2022, barely insignificant at the
90% level. In the Invind analysis, the treatment effect for this group in this period was very
small and positive, but only 28 gas intensive firms were included in the sample; the effect
was equal to - 25% for the remaining firms. Overall, we think that the evidence presented
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in this section corroborates two results of our main analysis: a) gas consumption drops, if
anything, only in the second semester 2022; b) in that period, gas intensive firms reduce their
gas consumption much less than other firms.

Table A.1: Treatment effects by calendar time among gas intensive firms

(1) (2) (3) (4)

ATT 21q3 0.01 0.00
(0.15) (.)

ATT 21q4 0.03 0.00
(0.10) (.)

ATT 22q1 0.04 0.01
(0.07) (0.06)

ATT 22q2 -0.05 0.00
(0.08) (0.07)

ATT 22q3 -0.05 -0.08
(0.11) (0.05)

ATT 22q4 -0.07 -0.09
(0.07) (0.05)

ATT 21h2 0.02 0.00
(0.11) (.)

ATT 22h1 -0.00 0.01
(0.06) (0.06)

ATT 22h2 -0.06 -0.08
(0.07) (0.04)

pvalue pre-trend 0.55 0.31 0.55 0.31
FirmXquarter FE No Yes No Yes
N 1008 854 1008 854

Note: the table presents the treatment effects of the expiration of a fixed-price contract in different calendar periods. Standard errors are
reported in parentheses.
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Appendix J Electricity intensive firms

We analyze administrative data from CSEA where we observe monthly electricity consump-
tion by electricity intensive firms, as defined by the Italian legislation, for years 2018-2022.59
Electricity consumption is measured at the meter level and transmitted to CSEA from the
retailers; thus measurement error should be very small. We match our data to the Invind
survey to obtain information on fixed-price protection, and restrict ourselves to the period
2020-2022. Our final matched sample is a balanced panel of 279 firms. In order to avoid
having cohorts with very few firms, we collapse the data at the quarterly frequency and
define cohorts of treatment as follows:

�8 =



2021@3, if �2021 = 0 and �4;4 ,2022 = 0

2022@1, if �2021 = 1 and and 0 ≤ <4;4
8

< 3

2022@2, if �2021 = 1 and and 3 ≤ <4;4
8

< 6

2022@3, if �2021 = 1 and and 6 ≤ <4;4
8

< 9

2022@4, if �2021 = 1 and and 9 ≤ <4;4
8

< 12

0, if �2021 = 1 and <4;4
8

= 12

(9)

Going from the earliest treated to the latest treated, cohorts have the following number of
firms: 106, 99, 5, 5 and 19. The pure control group includes 45 firms. The outcome variable
is the log consumption of electricity. We present results from our baseline, as in equation
(3). We use the Borusyak et al. (2021) estimator without any weight. Figure A.1 presents the
event-study graph. Treatment effects are very small and fluctuates around zero. Estimates
by calendar periodo (not reported) are always close to zero.

59See Ministerial Decree of the Ministry for the Green Transition n.541 of 2021.
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Figure A.1: Event-study estimates for the log quantity of electricity among electricity intensive firms

Note: The figures show average causal effects of the end of price protection on the log quantity of electricity.
Average causal effects before and after the treatment are estimated in two separate regressions, using the
“imputation” estimator by Borusyak et al. (2021). Confidence intervals at the 95% level.
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Appendix K Additional results

Figure A.1: Baseline results with different diff-in-diff estimators

(a) Average costs of electricity (b) Average costs of natural gas

(c) Quantity of electricity (d) Quantity of natural gas

Note: The figures show average causal effects of the end of price protection on the average costs of electricity
and natural gas (panels (a) and (b)) and the corresponding demanded quantities (panels (c) and (d)). Each color
corresponds to a different estimation procedure. Standard errors are clustered at the firm level. Confidence
intervals are at the 95% level.
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Figure A.2: Summary statistics for the yearly sample

(1)
Variables mean
Sectoral composition

Food and beverages 10%
Textiles & apparel 7%
Chem, pharma, rubber 12%
Non-metallic minerals 3%
Metalworking industry 49%
Wood, paper, furniture 13%
Water & waste 6%

Macroarea
North-West 41%
North-East 27%
Center 17%
South or Islands 14%

Firm-level outcomes
Capacity utilization [0-100] 78%
%change in the price of output 2%
Firm with profit (0 if balance or loss) 75%
Negative margin 12%

Energy-related variables
Gas is an indispensable input* (0/1) 37%
Subject to EU ETS 5%
Energy intensive firm 21%

Cohorts of treatment
Pure control 9%
Treated in 2021 58%
Treated in 2022 33%

Number of observations 595

Yearly sample

Note: Invind data. The table reports summary statistics for the yearly sample used in Section 7. Characteristics
are measured in 2019, at baseline. *The variable “Gas is an essential input” is taken from the Busines Outlook
survey of the Bank of Italy and it refers to the beginning of 2022. The number of firms for “% change in the
price of output” is 387 while the number of firms for the profit and loss variables is 542.
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