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Abstract
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contract expiration, firms do not reduce electricity demand and reduce gas demand only in the
second half of 2022. In that period, the estimated price elasticity of gas demand is -1.1 on average,
but it is much lower for gas-intensive firms. Additional evidence suggests that energy demand
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1 Introduction

How do firms cope with a large and sudden upsurge in energy prices? Until recently,
this question had little practical relevance, but the 2021-2022 energy crisis has changed this
perspective, sparking serious concerns with regard to its consequences on the European
economy.1 Understanding how such episodes affect firms and how they react is key to
inform policymakers on the most efficient way to manage future energy crises. Beyond its
relevance for emergency periods, addressing this question carries important implications for
the green transition, given the steadily increasing prices of fossil fuels along the path towards
achieving Net Zero.

In this paper, we answer the question above by providing fresh evidence from the 2021-22
European energy crisis, when the wholesale price of natural gas rose from around 30 euros
per megawatt hour (MWh) to 300, triggering a similar increase in the price of electricity.2
Existing works on this episode have relied on timely but aggregate time-series data (Ruhnau
et al., 2022; Corsello et al., 2023; Alessandri and Gazzani, 2023; Moll et al., 2023), while papers
using micro data on previous time periods (von Graevenitz and Rottner, 2022; Fontagné et al.,
2023; Gerster and Lamp, 2023) often leverage comparably smaller energy price shocks and
thus may not be readily applicable when trying to understand how firms navigate severe
energy crises. On the contrary, we use survey micro data on manufacturing firms covering
the period 2021-22, which allow us to identify large energy price shocks to firms and their
effects on their energy demand, input substitution, capacity utilization, and final output
prices.3

For identification, we exploit the fact that wholesale energy prices are transmitted only
gradually and partially to the actual energy prices paid by firms. Our novel empirical strategy
is based on the staggered expiration of fixed-price energy contracts at the firm level, which we
proxy using ad-hoc survey questions. We use a staggered difference-in-differences approach
to compare firms that experience an idiosyncratic increase in their energy costs with those
that will experience the same event in the future, or that never will during our observation
window. In order to estimate the effect, we mainly rely on the imputation estimator proposed

1For example, a joint statement by European industrial energy consumers in March 2022 reads: “The events
[ed. the invasion of Ukraine] have further precipitated Europe in a profound energy crisis that compromises the future of
Europe’s industrial base and the independence of its economy.”.

2The design of the wholesale electricity market is such that the price is set by the marginal producer, which
is a gas-fired power plants in most cases.

3The survey is the Indagine sulle imprese industriali e dei servizi (Inquiry into investments of industrial and
services firms), an annual survey conducted by the Bank of Italy since 1984. Over the years, it has been used to
address a number of research questions (Pozzi and Schivardi, 2016; Rodano et al., 2016; Guiso and Parigi, 1999;
Bond et al., 2015; Schivardi et al., 2021).
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by Borusyak et al. (2021), but our results are robust to alternative difference-in-differences
estimators (De Chaisemartin and dHaultfoeuille, 2020; Callaway and SantAnna, 2021; Sun
and Abraham, 2021) and to the synthetic difference-in-differences approach (Arkhangelsky
et al., 2021).

We show that the expiration of a fixed-price contract generates unanticipated and persistent
increases in the retail price of electricity and natural gas at the firm level, even after accounting
for government policies that partially mitigated price increases. For the average firm, retail
prices increase up to 47% in the case of electricity and 29% in the case of natural gas. This
result is relevant in and of itself, because it highlights the importance of fixed-price inventory
contracts, routinely used by firms for purchasing several inputs (Kumar and Wesselbaum,
2024), in the transmission of macro shocks.

In response to higher retail energy prices, firms do not change their demand for electricity.
Instead, they reduce their demand of natural gas, but only in the second half of 2022, irre-
spective of the cohort of treatment. Pooling effects across cohorts, we find that in that period
the average firm reduces gas demand by 34%. We argue that this delayed response in nat-
ural gas adjustment is because of the pessimistic expectations about the continuation of the
crisis emerging in the summer months of 2022, when the spot price reached unprecedented
levels (more than 300 euros per MWh) and futures markets were forecasting that the gas
price would stay at very high levels (around 200 euros per MWh) at least until mid-2023.
These patterns of behaviour are consistent with a model of adjustment costs (Pindyck and
Rotemberg, 1983; Atkeson and Kehoe, 1999), where (perceived) temporary shocks lead to
inaction (as in second half of 2021 and the first of 2022), while (perceived) permanent ones
prompt action (like in the second semester 2022).

We conduct an extensive heterogeneity analysis with random forests and show that the drop
in gas consumption in the second half of 2022 is larger (-41%) among firms who declare that
this input is not essential in their production process, and smaller (-28%) for those who declare
that gas is an essential input (the difference is significant at the 10% level). Interestingly, firms
declaring that gas is essential constitute a sizable group (more than 50%), spread over many
economic sectors, and include almost all gas intensive firms (so called gasivore). Among the
latter group, made of a thousand firms accounting for 20 per cent of national natural gas
consumption, the downward adjustment in the second half of 2022 is even smaller (-8%).

We then proceed to calculate price elasticities of electricity and gas demand by rescaling
the quantity effects by the price effects estimated above. As for electricity, this parameter
is zero on average and not different across different types of firms. While this appears in
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sharp contrast with other estimates from recent studies on the pre-crisis years (e.g. between
-0.4 and -0.6 on average in Marin and Vona (2021); Fontagné et al. (2023); von Graevenitz
and Rottner (2022)), recent estimates using large shocks on large electricity consumers find
smaller elasticities (between -0.09 and -0.2 in Gerster and Lamp (2023)). Moreover, the studies
above also find smaller elasticities for larger shocks and in more recent periods, consistently
with our results.

As for natural gas we find an average demand elasticity equal to -1.1, higher compared to
the older literature (Labandeira et al., 2017), but broadly in line with the recent findings of
Fontagné et al. (2023) (between -0.9 and -1.2). In addition, we find substantial heterogeneity
in the gas elasticity across firms: -0.5 for firms for which natural gas is an essential input
and -2.5 for other firms; -0.03 for gas intensive firms, -1.3 for the other firms. Our elasticity
estimates have direct policy implications. Among other things, we can use these numbers
to estimate to what extent price-distorting support measures used during the crisis have
increased natural gas demand. Similarly to Deryugina et al. (2020), we use a simple and
standard tax incidence formula to study how the equilibrium consumption of natural gas
changes after the introduction of a per-unit quantity subsidy. We show that the hetero-
geneity in demand elasticities that we uncover bear sizable implications for the equilibrium
consumption response, provided that the supply elasticity is not too low.

In the second part of the paper, we investigate the potential mechanisms behind these patterns
of adjustment in energy demand. On the one hand, firms that adjust gas consumption
downwards can substitute it with other inputs and/or reduce their output. On the other
hand, firms that do not reduce their energy consumption can shift their cost increases to the
prices of their final goods and/or reduce their profit margins.

In order to look at input substitution, we rely on administrative data on plants subject to
the European Emission Trading System (EU ETS), which record physical quantity use of all
energy and non-energy fossil fuels at an annual frequency starting from 2018. We find that,
upon expiration of fixed-price contracts, EU ETS plants decrease gas demand and increase
the use of other fossil fuels. On net, our point estimates indicate that this substitution
accounts for at most half of the energy content that is lost with decreased gas consumption,
though these effects are rather imprecise. Substitution is incomplete at best, as treated firms
are unable or unwilling to completely offset the natural gas drop by using other fossil fuels.

In order to look at the physical output produced by firms, their profit margins, and prices of
their final goods, we turn to a longer yearly panel of our survey covering the 2018-2022 period.
Here we exploit quantitative survey questions on plant capacity utilization, the growth rate
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of final good prices and a categorical variable indicating profit levels. Upon expiration of
a fixed-price contract, in 2022 plant capacity utilization decreases by less than 2 p.p. (not
significant) from an average baseline of 80%. Also, we detect no significant heterogeneity
across different types of firms. Conversely, being exposed to the energy shock reduces the
probability to have a positive profit margin by 10 percentage points in 2022. This effect is
sizable as in our sample about 80% of firms declare they make profits. When looking at the
growth rate of final prices, in 2022 we find that the shock leads to a decrease of 2.7 percentage
points, not significant. The average price increase in our sample was 11% in the same year
and no firms decreased their price. The empirical pattern in our data is consistent with a
model of strategic complementarities, where rivals’ shocks matter for one’s price adjustment, or
a model of price taking, where firms’ final output prices do not depend on idiosyncratic cost
shocks, but just market-wide cost shocks (Duprez and Magerman, 2018; Amiti et al., 2019;
Muehlegger and Sweeney, 2022). As for prices, some interesting patterns emerge among
gas intensive firms: upon exposure to the shock, they do increase significantly their final
good prices. This indicates that pass-through was a successful strategy for this type of firms
which did not cut gas consumption by much; this results is in line with recent evidence in
Lafrogne-Joussier et al. (2023).

Our paper contributes to different strands of the literature. First, we contribute to the
literature on the effects of the 2021-2022 energy crisis on firms. In this respect, recent macro
studies have either looked at the impact crisis on inflation and on output using models or
aggregate data (Alessandri and Gazzani, 2023; Bachmann et al., 2022; Moll et al., 2023). In this
paper we provide the first firm-level evidence on the impact of the ongoing energy crisis on
industrial firms’ input demand, together with other relevant response margins, highlighting
the role of treatment effect heterogeneity, also in the time dimension.

Second, we contribute to the literature estimating natural gas and electricity demand elastic-
ities for firms. While there is more credible evidence for households (Reiss and White, 2005;
Jessoe and Rapson, 2014; Auffhammer and Rubin, 2018; Hahn and Metcalfe, 2021), estimates
for industrial firms are more limited and traditionally used instrumental variables relying
on sector or time-series variation.4 Our work complements and is very much related to very
recent pre-crisis contributions trying to leverage across-firm variation in energy prices to
estimate demand elasticities (Marin and Vona, 2021; Fontagné et al., 2023; von Graevenitz

4Previously used instruments for the price of energy in a demand equation include: price paid by the
household or industry sector only (Burke and Abayasekara, 2018; Csereklyei, 2020), domestic natural gas
reserves and distance weighted reserves in other countries (Burke and Yang, 2016), lagged prices (Graf and
Wozabal, 2013), the spot price of Brent crude oil (Davis and Muehlegger, 2010), weather shocks (Hausman and
Kellogg, 2015), wholesale prices Faiella et al. (2022) among others.
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and Rottner, 2022; Gerster and Lamp, 2023). In our work we propose a new and credible
identification strategy based on the availability and staggered expiration of fixed-price con-
tracts and other hedging instruments already in place before the crisis, which slow down
the transmission of wholesale to retail energy prices for some firms, more than others. This
prevents our effects to be confounded by aggregate contemporaneous shocks.

Third, our results speak to the potential effects of higher energy prices during the energy
transition. How firms react to energy input price shocks is related to how they react when
facing carbon pricing schemes (Martin et al., 2014; Cui et al., 2018; Colmer et al., 2023;
Martinsson et al., 2024).

Finally, the paper is related to the literature on the pass-through of cost shocks (Ganapati
et al., 2020; Amiti et al., 2019; Muehlegger and Sweeney, 2022; Lafrogne-Joussier et al., 2023).
While we do not estimate a pass-through rate due to data limitations, we show that during the
crisis firms did not differentially increase their prices depending on their own idiosyncratic
shocks, with the exception of gas intensive firms.

The paper is structured as follows. In Section 3 we describe the data, how we validate
survey answers against administrative sources and national accounts, together with the
measurement of key variables for our analysis. In Section 2 we provide background on
the energy crisis in Italy. In Section 5 we describe in detail our identification strategy. In
Section 6 we show the main results on how firms’ average unitary energy costs react to
the expiration of fixed-price energy contracts, and its consequences for energy demand. In
Section 7 we show how firms react not only by changing their energy demand, but also by
setting new prices, changing the utilization rate of their plants and substituting away from
more expensive energy inputs. In Section 8 we illustrate the policy implications of our results
with some simple incidence calculations and in Section 9 we conclude.

2 Background: 2021-22 energy crisis in Italy

One year before the beginning of the energy crisis (in 2020), Italy was a net importer of
natural gas: imports accounted for 93% of gross inland consumption. Of these imports,
Russia accounted for 43%, making it a key supplier. Italy was also a net importer of electricity,
and natural gas accounted for approximately half of domestic power generation. The high
reliance on natural gas in electricity production coupled with the marginal price system at
work in the day-ahead power market implies that shocks to the wholesale price of natural
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gas almost completely pass-through to the wholesale price of electricity.5 Figure 2.1 plots
the evolution of the wholesale price of natural gas in Italy. The price was rather stable
at low levels until mid-2021 (around 30 euro per MWh). After that, it slowly started to
rise above historical levels. The first major upswing occurred in the fall of 2021, when the
price went above 100 euros per MWh; the second took place in December of the same year,
when it almost reached 200 euros. After a temporary drop, the price rose up to around 250
in February when Russia invaded Ukraine, but rapidly decreased thereafter and stabilized
below 100 until the summer of 2022. At that point, the price climbed again quite rapidly,
reaching a historical peak at over 300 euros in late August 2022. Before the end of the year,
the price dropped to much lower levels, and then up again, before a final descent to 70.

Figure 2.1: Wholesale gas price (PSV) at the daily frequency

Source: GME. Note: The figure shows the spot price of natural gas traded on the Italian trading point.

3 Data

The main data source used in this paper is the Indagine sulle imprese industriali e dei servizi
(Inquiry into investments of industrial and services firms; henceforth, Invind), an annual
survey conducted by the Bank of Italy since 1984 and representative of industrial and services
firms with at least 20 employees. The Bank conducts the survey between February and May of
every year C and contains information on standard firm-level variables such as sales, profits,
employment, costs, capacity utilization, actual and expected own price changes and actual
and expected investment in year C − 1. Invind data have been used before in the literature
to address a number of research questions6 and it is also routinely used by the Bank of Italy

5The two time series of gas and electricity prices are indeed highly correlated (98% at the daily frequency).
6These include the impact of productivity and demand shocks on firms’ growth (Pozzi and Schivardi, 2016),

bankruptcy law and bank financing (Rodano et al., 2016), the determinants of investment demand (Guiso and
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to provide timely evidence on sales and investment dynamics as well as other issues in its
official reports.

For the purpose of this study, at the end of 2021 we designed an ad hoc section on the 2021
energy crisis, administered in the spring of 2022 (henceforth, 2021 wave) only to industrial
firms with 50 employees or more. The following year, at the end of 2022, we designed a new
survey wave that was administered to firms in the spring of 2023 (henceforth, 2022 wave).
We restrict our sample to firms that use energy as an input, that is we drop NACE sectors 19
(manufacture of coke and refined petroleum products) and 35 (electricity, gas, steam and air
conditioning supply).

The main advantage of this survey is that we could gather timely information on firms’ energy
expenditures and consumption, together with hedging strategies against the crisis, which
we could directly link to other more standard firm-level variables. This is particularly useful
as no other representative firm-level data source on 2021-2022 is available at the moment for
research purposes.

3.a Structure of the energy survey section

The 2021 wave contained nine quantitative questions, while the 2022 wave contained twelve
quantitative questions. We report all of them exactly as they appeared to firms in Appendix
A. The results of the analysis based on wave 2021 alone were carried out during 2022 and
reported in a Bank of Italy working paper (Alpino et al., 2023). Questions in the second wave
were designed after conducting such analysis.

In both waves, the survey asks firms to indicate both expenditures (in thousands of e )
and physical quantities (in MWh and standard cubic meters) for electricity and natural gas
purchases separately, both during the first and second semester of the previous year (2021
and 2022).7 Dividing expenditures by physical quantities at the half-yearly frequency allow
us to construct firm-level average unitary costs (retail energy prices, henceforth) for electricity
and natural gas, separately for each semester of 2021 and 2022.

Importantly for our identification strategy, in both waves we ask firms questions about their
fixed price contracts or equivalent hedging tools that firms were endowed with before the
start of the crisis (more precisely at the beginning of 2021). We explain in detail how we use
these variables to build our treatment variable in Section 3.e.
Parigi, 1999; Bond et al., 2015), mechanisms behind agglomeration economies (Andini et al., 2013) and the role
of management practices during the Covid-19 pandemic (Schivardi et al., 2021)

7This purposefully excludes self-production of energy by firms.
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In the 2022 wave we also collect additional information on subsidies received under the tax
credit scheme implemented by the Italian government in 2022 to mitigate the impact of the
energy crisis on firms. This is the single largest policy implemented in Italy to cushion firms
against higher prices and the only one that would not be directly visible in the energy bills
that we observe in the survey (such as cuts in VAT and administrative and environmental
fees). In Section 6 we show that our treatment variable is still strongly predictive of changes
in average unitary costs, net of any government transfers, eliminating concerns that our
treatment may not have enough power.8

3.b Other administrative data sources

We supplement the survey data with other confidential administrative information, which
we match through firms’ unique tax identification numbers. We gather information on
whether firms have at least one plant subject to the EU Emissions Trading System (EU ETS).
For these factories we have detailed input use by fuel at the yearly frequency from the Italian
Institute for Environmental Protection and Research (ISPRA). We use these data on fuel
consumption both to validate the gas consumption measures in our survey, and to study the
substitutability away from gas towards other inputs. In addition, we use micro-level energy
consumption data from the Fund for Energy and Environmental Services (CSEA) on firms
which are eligible for energy subsidies, because of their high electricity or gas intensity and
levels of consumption (energivore firms).9 For electricity intensive firms we observe electricity
consumption (in MWh) at the monthly frequency since 2018.10 For gas intensive firms, we
observe natural gas consumption (in standard cubic meters) at the monthly frequency in
2019, 2021 and 2022.11 These companies, slightly less than 4,000 in Italy, belong to the right
tail of the energy-intensity distribution.12 Similarly to the ISPRA data, we also use the data

8Estimates included in the Bank of Italy Annual Report for 2022 indicate that the Italian tax credit helped
industrial firms to reduce their average unitary costs for electricity and natural gas by 13 and 18%, respectively.

9The registry is publicly available on the website of the Fund for energy and environmental services (portale
elettrivori, Cassa per i servizi energetici e ambientali, CSEA).

10The subsidies have been in place for several years and grant a permanent discount on the component of
the electricity price that is earmarked to finance subsidies for renewable energy generation (oneri di sistema
A3*SOS). This component was completely lifted for all firms starting from January 2022, while in the last three
quarters of 2021 it was lifted for low-voltage consumers (e.g. households and small firms).

11The concept of gas intensive firms was introduced during the crisis to identify firms more exposed to the
energy shock. Since 2023, these firms enjoy a permanent discount on the component of the natural gas price
that is earmarked to finance policies aimed at reaching emission reductions to meet EU goals (componente '���
and '�)��).

12In order to qualify for the subsidy scheme, firms must consume at least 1 GWh of electricity or gas per year.
In addition they must belong to a specific set of 4-digit NACE industrial sectors defined by the EU regulation on
State Aid; for a sub-set of these sectors there is the additional requirement of having the ratio between energy
expenditure and value added or sales higher than a threshold.
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from CSEA to validate our survey measures.

Finally, we use additional information from the Italian National Institute of Statistics (Istat)
on the energy intensity of the Italian industrial sectors at the level of 2-digit NACE industries
and Eurostat data on average retail prices and consumption for industrial consumers by
consumption bracket. These data are useful to validate our survey measures, as succinctly
described in the next subsection. All of the validation analyses are reported in Appendix C.

3.c Validation of survey answers

Given that respondents might not be familiar with physical units of energy, we validate
our measurement by verifying whether self-reported quantities of gas and electricity or the
respective expenditures take plausible values. Intuitively, excessively high or low figures
suggest that respondents get the order of magnitude wrong, e.g. kWh instead of MWh.
To this end, we rely on two benchmarks: (i) Eurostat data on average unitary prices for
non-household consumers; and (ii) Invind data on the ratio between total energy costs and
turnover.

In 22% (21%) of our observations on electricity (natural gas) we detect a systematic mistake
in the units of measurement that can be adjusted by re-scaling the values in the first wave of
the survey. The next year, such shares become 22.5% and 18% respectively. Whenever we
cannot reconcile the replies with plausible units of measurement, we adopt a precautionary
approach and disregarded such observations from the estimation samples; this is the case
for 6.1% (6.3%) of the observations on electricity (natural gas) consumption in the 2021 wave
and 3.8% (6.2%) of the observations in the 2022 wave. In general, the comparisons with
quantities consumed as recorded by administrative sources (for energy intensive or EU ETS
firms) lend credibility to the accuracy of our raw data and of our adjustment algorithm.
Only 2.8% (4.5%) of the electricity sample and 2.1% (2.5%) of the natural gas sample in 2021
(in 2022) were conservatively dropped due to differences larger than 35% in absolute value
between survey and administrative records. We report more detailed information on our
data validation algorithm in Appendix C.

3.d Non-response bias

Invind is a yearly business survey administered by the Bank of Italy since the 1980s, routinely
used in the Bank’s official reports and that has been used before in economic research to an-
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swer a variety of questions.13 The Bank interviews the same set of firms every year, adjusting
for exit. In order to maintain survey representativeness of the target population in each year,
unit non-response is taken care of using a standardized raking post-stratification procedure.
This amounts to adjusting survey weights ex-post such that marginal distributions of key
variables are equal to those in the population (Bank of Italy, 2017).

Even absent issues related to unit non response, we need to consider that not all Invind
respondents provide valid replies to our ad hoc energy sections, generating an item non
response issue. In order to mitigate concerns that this generates bias in Appendix D we
use an inverse-probability-weighting strategy (Wooldridge et al., 2002; Stantcheva, 2022) and
show that our results remain unaltered even after assigning larger weights to firms having
attributes that make them more likely not to respond to the energy sections.

3.e Measurement of key variables

In this section we illustrate how we use answers to our survey questions to build cohort-of-
treatment dummies that we use in our staggered difference-in-differences design.

In the 2021 wave of the survey, we ask: “At the beginning of 2021, did your firm own any
instrument that protected it, wholly or partly, from the energy price increases over the second half
of the year?”. This comes with four possible replies: (a) No (b) Yes, fixed-price contracts (c)
Yes, financial derivatives (d) Yes, other instrument. Given that the vast majority of protected
firms use fixed-price contracts, we collapse all "Yes" answers and construct a dummy variable
called �2021

8
(=1 if protected).

Two things are worth noticing. First, the formulation specifies that the question refers to
contracts already in place at the beginning of 2021, a time when the markets did not foresee
the upcoming crisis.14 This is key to ensure that the question does not pick up firms that
subscribe fixed price contracts as an endogenous response to the crisis. Second, notice that
this question conflates both protection from increases in electricity and in natural gas prices,
due to space constraints in the survey. The fact that we cannot measure these separately can
introduce measurement error. Reassuringly, this variable is strongly predictive of changes in
average unitary cost of both electricity and natural gas between the first and second semester
of 2021.15

13See (Pozzi and Schivardi, 2016; Rodano et al., 2016; Guiso and Parigi, 1999; Bond et al., 2015; Schivardi et al.,
2021)

14As late as March 2021, future markets were expecting the TTF price of natural gas next October to be in line
with the average value for the same month in the previous five years (around 15 euro). By July, the expectation
had climbed to 36 euro, still well below the final realized price of 76.

15The correlation is stronger for electricity. This is consistent with evidence from the Bank of Italy Survey
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In the 2022 wave of the survey, this time separately for electricity and natural gas, we
ask: “In 2022, did your firm have instruments (for example fixed-price contracts or derivatives) to
protect itself, even partially, from rises in the prices of electricity (natural gas)?”, with two possible
replies: (a) Yes (b) No. Similarly to before, for a given input 9 = {electricity, natural gas}, we
construct a dummy called � 9 ,2022

8
taking value 1 if the firm had any instruments. Furthermore,

separately for electricity and natural gas, we ask: “If yes, how many months did this protection
last in 2022?”, with open answer. We call this variable <

9

8
, again for a given input 9 =

{electricity, natural gas}.

Restricting our attention to firms present in both waves, we combine answers from both
questions to build an input-specific treatment cohort variable � 9

8
, indicating the semester (ℎ)

when the firm is first exposed to higher prices for a given input 9 = {electricity, natural gas}
(0 if it is never exposed in the observation window). The variable is constructed as follows:

�
9

8
=



2021ℎ2, if �2021 = 0 and � 9 ,2022 = 0

2022ℎ1, if �2021 = 1 and � 9 ,2022 = 0

2022ℎ2, if �2021 = 1 and � 9 ,2022 = 1 and < 9

8
= 6

0, if �2021 = 1 and � 9 ,2022 = 1 and < 9

8
= 12

(1)

The interpretation of this variable goes as follows. We consider all firms to be protected in
2021ℎ1, as the crisis has not yet started. Firms with �2021 = 0 and � 9,2022 = 0 are immediately
exposed (�8 = 2021ℎ2) because they were not protected nor in 2021 nor in 2022. We call these
firms the “early treated”. Firms with �2021 = 1 and � 9 ,2022 = 0 are first exposed in the first
semester 2022 (�8 = 2022ℎ1). We call these firms the “mid treated”. Firms with �2021 = 1 and
< 9 = 6 are “late treated”: protected during 2021 and during 6 months in 2022. We assume
these are the first 6 months of the year and set �8 = 2022ℎ1. In other words, we assume
that at the beginning of 2021 the firm was holding a fixed-price contract that eventually
expired in mid-2022. Note that this is the only sensible assumption because it was almost
impossible to purchase insurance against higher energy prices after Russia invaded Ukraine,
as no retailer was supplying fixed price contracts. Nevertheless, we will test this assumption
in our event-study analysis by checking that price of 9 increase in line with our assumed
timing. Finally, firms with �8 = 0 are protected during 2021 (�2021 = 1) and during 12 months
in 2022 (< 9 = 12). They constitute our “pure control group”. In total, our electricity sample

on Inflation and Growth Expectations, where this information was asked separately. Evidence therein shows
that almost all firms with a fixed price contract for gas have the same type of contract also for electricity, while
among those firms with fixed price for electricity, two thirds have the same type of contract for gas. More
details are provided in Alpino et al. (2023).
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is made of 413 firms, while our gas sample is made of 308 firms.16. Note that in principle
the formulation of our questions does not exclude the possibility that the initial contracts
expire at the end of 2021 and that the firm immediately buys a new one. In Appendix F we
use a synthetic diff-in-diff design to show that this is not the case. In other words we check
that price of 9 for the “mid treated” increases relative to the “pure control group” starting in
2022h1. Thanks to these variables we construct event-time ( 8 = C −�8) dummies (specific to
electricity or natural gas) that we use in the event-study specifications described below.

Through this sample selection procedure we are dropping firms that are protected for only
part of a given semester in 2022. These are firms that have 1 ≤ <8 ≤ 5 or 7 ≤ <8 ≤ 11, of which
there are 31 in the case of gas and 20 in the case of electricity. As it is visible in equation 1, this
sample selection does not affect the composition of the “early treated” and “mid treated”,
but would affect the composition of the “late treated” and the “pure control group”. Despite
the small number of “late treated”, we prefer to exclude these firms, as this creates a better
alignment between the time dimension of the treatment variable and of the outcome variable.
If firms are fully protected in their last semester of protection, the treatment becomes binary.
Otherwise, the treatment would be continuous in the last semester of protection, making it
harder to interpret the effects.

There is another group of firms that we exclude: (ii) firms that were not insured in 2021
(�2021 = 0) but were protected during 2022 (�2022 = 1). These are 14 firms in the gas sample
and 32 firms in the electricity sample. This is because we see this form of protection as
potentially endogenous to potential outcomes. Firms who choose to insure themselves after
receiving the shock in 2021 may do so in anticipation of their treatment effects, leading to
bias. Instead, in all of our regressions we condition on firms being insured at the beginning
of 2021, when market participants were not foreseeing the upcoming crisis. Thus these firms
were exposed sooner rather than later to the energy shock because of the timing of expiration
of their contracts, and not because some of them decided to take action in anticipation of the
crisis. We further discuss the validity of our identification assumptions in Section 5.b.

For some of our analyses and specifically those on input substitution and firm performance,
we must rely on a yearly panel. In that setting we change the definition of our cohorts
of treatment, again to better align the time dimension of our treatment and our outcome
variables. When we collapse the treatment at the yearly frequency, many more firms see
their electricity contracts expire when their gas contracts expire. Since we do not have a lot
of separate variation for the two inputs, we construct a joint yearly treatment cohort �.

8
in

the following way:

16The share of firms in each cohort, together with other summary statistics can be found in Table 4.1
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�.8 =


2021, if �2021 = 0 and �2022,4 ;4 = 0 and �2022,60B = 0

2022, if �2021 = 1 and �2022,4 ;4 = 0 and �2022,60B = 0

0, if �2021 = 1 and �2022,4 ;4 = 1 and �2022,60B = 1 and <4;4
8

= 12 and <60B

8
= 12

(2)

The definition of the cohorts follows very closely that for the half-yearly frequency in equation
1. We end up with a greater sample of 837 firms. The number of firms is substantially higher
than in the half-yearly setting. This is because we also use firms that responded to our price-
protection questions but then do not respond to the energy expenditure and consumption
questions. As we show in in Table A.3 in Appendix J the sample is not too different from the
half-yearly one in terms of observable characteristics, a point on which we return below in
the results section.

3.f Outcome variables on firm performance

When looking at the impact of higher retail prices on firm-level outcomes other than energy
demand, we focus on three distinct outcomes that we draw from the Invind survey: the
growth rate in final goods prices17; capacity utilization and a Likert categorical variable on
profit margins. Here we describe in detail how they are constructed.

As for the growth rate in final good prices, we rely on a recurring quantitative open question
asking to report the “Average annual percentage change in selling prices of goods and
services” between year C and year C − 1.

As for the measurement of output responses, firms are asked about the capacity utilization
of their plants, defined as the percentage ratio between actual production and maximum
possible output.

On profit margins, we rely on a recurring question asking: “Please describe the firm’s
operating result for 2022?”, that has five qualitative options: “1 = large profit; 2 = small
profit; 3 =broad balance; 4 = small loss; 5 =large loss.”. Based on this variable we construct a
dummy taking value one when the firm operates on “large profit” or “small profit”

17The level of final good prices is not available in the Invind survey.
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4 Summary statistics

In Table 4.1 we report summary statistics for our energy demand estimation samples, i.e.
an electricity sample and a natural gas sample. Characteristics are measured before the
start of the crisis, that is in the first semester of 2021. As from the Invind sampling design,
included firms belong to the industrial sector and have at least 50 employees. All statistics
are weighted by survey weights. At the bottom we report the number of firms. The number
of observations can be retrieved by multiplying the number of firms by four (the number of
semesters).

Overall, the electricity and the natural gas sample have similar characteristics. As for the
sectoral distribution, more than half of the firms are in the metalworking industry, while the
remaining half is more or less evenly split across the other sectors. Non-metallic minerals
and water & waste remain residual categories in both samples. More than 80% of firms are
located in the North of the country, while only between 5 and 7% of the sample is in the South
or Islands. The unitary retail price of electricity is 16 euro cents per KWh for the electricity
sample and the average firm consumes around 6000 MWh of electricity in a semester. As for
gas, the average firm in the gas sample pays 10 euros per GJ of natural gas, while it consumes
63 million standard cubic meters of gas. Both in the electricity and gas sample, around
a third of firms are energy intensive according to the Italian legislation definition18, while
around 5% of them have plants subject to the EU-ETS. Around half of firms in the gas sample
declare that gas is an essential input in their production process. Cohorts of treatment are
not evenly split. Only 14 or 18% in the electricity and gas sample, respectively, belong to the
pure control group. The biggest groups are the early treated (exposed in the second half of
2021) and the mid treated (exposed in the first half of 2022). The late treated (exposed in
the second half of 2022) is a residual category, accounting for 1% and 3% of the respective
samples. Finally, as noticed at the beginning, firms in our sample are relatively large, with
yearly revenues in the order of 80-90 million euros and more than 200 employees on average
(although these distributions are very skewed).

18See Ministerial Decree n.541 of 2021.
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Table 4.1: Summary statistics for the electricity and gas samples

(1) (2)
Variables mean mean
Sectoral composition

Food and beverages 8% 6%
Textiles & apparel 13% 11%
Chem, pharma, rubber 12% 15%
Non-metallic minerals 4% 4%
Metalworking industry 51% 51%
Wood, paper, furniture 10% 11%
Water & waste 3% 3%

Macroarea
North-West 40% 43%
North-East 39% 40%
Center 14% 13%
South or Islands 7% 5%

Energy-related variables
Price of electricity (euro/KWh) 0,16
Price of natural gas (euro/GJ) 10,41
Quantity of electricity (GWh) 6,161
Quantity of natural gas (mil. smc) 63,406
Energy-intensive firm (0/1) 30% 29%
Subject to the EU-ETS 4% 5%
Gas is an indispensable input* (0/1) 54%

Cohorts of treatment
Pure control 18% 14%
Early treated 44% 45%
Mid treated 35% 40%
Late treated 3% 1%

Other firm-level information
Sales (million euro) 86,26 97,76
Labour force 204,2 224,9

Number of observations 413 308

Electricity sample Gas sample

Note: Invind data. The table reports summary statistics for the energy demand analyses used in Section
6. Characteristics are measured in the first semester of 2021, at baseline (thus the number of observations
corresponds to the number of firms). *The variable “Gas is an essential input” is taken from the Business
Outlook survey of the Bank of Italy and it refers to the beginning of 2022.
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5 Empirical strategy

5.a Main specification

In this Section we describe how we isolate the causal effect of higher electricity and natural gas
prices on firms’ respective input demands. We consider the following econometric model:

log H8 9C = 8 + �C +
3∑
:=0

�8 9: · 1(C − � 9
8
= :) + &8 9C , (3)

where H8 9C can either be the quantity @ or retail price ? of energy type 9 (electricity or natural
gas) for firm 8 in semester C. 8 is a set of firm-level fixed effects that capture time-invariant
differences in outcomes between firms. �C is a set of calendar time fixed effects that capture
unobservable common trends across different cohorts of firms. 1(C − � 9

8
= :) are dummies

that capture time relative to the contract expiration date � 9
8

(event time, henceforth).19 The
coefficients �8 9: are potentially heterogeneous treatment effects of contract expiration on firm
8 at horizon : after the contract expiration.

Note that � 9
8

is specific to each energy type 9. We do not include � 9
8

for both types in the
same equation because they are highly correlated and lead to multicollinearity. The high
correlation is partly due to data limitations (the insurance question is not fuel specific in 2021;
see Section 3.e) and partly due to institutional features: data for 2022 shows that it is very
common to have the same type of contract for both fuels.20 Thus, when using quantity as
outcome, our design has two limitations. First, it does not allow to estimate cross elasticities.
We see this as a minor limitation because in our context the crisis induced an increase to the
wholesale price of both natural gas and electricity.21 As such, there was limited scope for
substituting one fuel with the other to reduce costs. In addition, substitution between these
two energy sources is technically difficult in the short run. Second, our design effectively
identifies the increase of the price of both electricity and natural gas; thus, even in the absence
of cross-substitution, quantity of one input might be affected by changes in the price of the
other input via a (negative) scale effect. This is not a concern in our setting. As we show in the
results section, electricity does not respond to higher prices, eliminating the concern that part
of the gas response could be driven by an electricity-induced scale effect. A similar argument
can be made for gas: since electricity does not respond at all, we detect no gas-induced scale

19See Section 3.e on how we construct this variable.
20The correlation between �4;42CA828CH

8
and � 60B

8
is 0.59, between <4;42CA828CH

8
and <60B

8
is 0.72.

21The design of the wholesale electricity market implies that the price of electricity is equal to the bid of the
marginal power producer, which is a gas-fired power plant in most hours of the year.
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effect on electricity.

We estimate equation 3 on a balanced panel of firms observed during all the four semesters
of 2021-2022 using the “imputation estimator” of Borusyak et al. (2021). This estimator
is consistent for the average treatment effect on the treated (ATT) under standard parallel
trends and no-anticipation assumptions, which we discuss below. The estimator works in
three steps. First, it uses untreated (i.e. never-treated or not-yet-treated) observations of
each firm to estimate the following model: log H8 9C = 8 + �C + D8 9C . Under the parallel trend
assumption this gives us an estimate of each firm’s counterfactual outcome absent treatment,
i.e. log H8 9C(0)̂. Then, for each treated period of each eventually treated firm it computes a
treatment effect (�8 9C) as the difference between the observed and the counterfactual outcome,
i.e. �8 9C = log H8 9C − log H8 9C(0)̂. Lastly, it aggregates up individual treatment effects (�8 9C)
using weights of choice, depending on the precise estimand one is interested in. In all
of our specifications we use survey sampling weights. In order to study treatment effect
heterogeneity more systematically, we compute (survey-weighted-)averages over subsets of
firms. Standard errors are clustered at the firm level to avoid known serial correlation issues
(Bertrand et al., 2004). Finally, as suggested by Borusyak et al. (2021), we estimate pre-
trend coefficients by a separate regression of the outcome on time fixed effects, firm fixed
effects and dummies for periods before treatment. This is estimated using only untreated
observations for each firm. As a consequence, in each event-study graph pre and post
treatment coefficients are from different regressions; pre-treatment coefficients are relative
to the first untreated period (: = −3), while post-treatment coefficients are relative to the
average of the pre-treatment periods. Despite our preferences for the imputation procedure,
Appendix J presents results of our baseline specifications obtained with other estimators,
including De Chaisemartin and dHaultfoeuille (2020), Callaway and SantAnna (2021), Sun
and Abraham (2021), and plain OLS.

5.b Validity of the difference-in-differences design

As it is standard in difference-in-differences designs, we make two assumptions. First, we
assume that firms’ potential log-outcomes absent treatment evolve according to the following
simple additive model: log H8C(0) = 8 + �C + D8C , a parallel trend assumption. Second,
we assume that observed log-outcomes are equal to untreated potential outcomes before
treatment i.e. log H8: = log H8:(0), a no-anticipation assumption.

As for the parallel trend assumption, we have good reason to believe that it holds in our
design. This is because the expiration dates for fixed-price contracts are predetermined
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and not influenced by the crisis or firms’ endogenous responses to it. In defining our
treatment variable, we always condition on firms being already insured at the beginning
of 2021, when the futures market was forecasting a stable and low price of natural gas.22
Whether a firm’s fixed-price contract expires sooner rather than later is only a result of when
the contract was last signed, a matter of luck more than anything else. While we cannot
directly test the parallel trend assumption, we always provide tests for parallel pre-trends
and find no evidence thereof. As a robustness exercise, we also estimate synthetic diff-in-diff
specifications (Arkhangelsky et al., 2021), which make pre-trends parallel by construction.
Our results are confirmed qualitatively and quantitatively, indicating that the estimates
obtained with the Borusyak et al. (2021) estimator are not driven by pre-treatment trends.

One may be concerned that the “early treated” cohort (�8 = 2021ℎ2) makes an exception to
the logic above. Indeed this group may include two sub-categories of firms, which we cannot
separate in the data. The first sub-category consists of firms that had fixed-price contracts at
the beginning of 2021 that expired in the second half of 2021. These firms subscribed fixed-
price contracts but simply were unlucky with the timing. The second sub-category consists of
firms that were under variable-price contracts and thus were immediately exposed to higher
prices. This latter group of firms might not have had protection because they expected
to perform particularly well in the event of an energy crisis. One may be concerned that
this part of early treated firms is fundamentally different and that the other cohorts do
not represent a good counterfactual for what would have happened to them, absent the
treatment. Given that for this group of early-treated we only observe one period before
treatment, we cannot perform a pre-trend test for them. To address this issue, in Appendix J
we present cohort-specific estimates and show that the results are not driven by any specific
cohort. Furthermore, notice that the “early treated” cohort never serves as a control group
for the other cohorts.

As for the no-anticipation assumption, we always present pre-trend tests and verify that
treatment effects do not materialize before contract expiration. Also, the fact that treatment
effects are not significantly different across cohorts signals that anticipation is likely not an
issue in this setting.

22An analysis of energy futures suggests that market participants did not anticipate any surge in gas prices
until at least May 2021. For example, the contract expiring at the end of 2021 which eventually closed at 107
euro/MWh was trading at 18 at the beginning of February, at 20 at the beginning of April, at 24 at the beginning
of May, at 41 at the beginning of August.
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6 Effects on energy prices and energy demand

Figure 6.1 reports our baseline results. All plots report point estimates and associated 95%
confidence intervals for average causal effects �: , with : = {0, 1, 2} and pre-trend coefficients
from a separate regression for : = {−2,−1} (omitted category is : = −3). In the top two
panels the outcome is the log of retail price of electricity and natural gas. Correspondingly,
in the two bottom panels the outcome is the log of physical quantities of electricity and gas
purchased by the firm. Since many of the �: coefficients are relatively large, in the text we
describe the magnitude of the effects by commenting on 4�:−1, which transforms log changes
in exact percentage changes.

Figure 6.1: The effect of the expiration of a fixed-price contract on average prices and quantities of
energy inputs at the firm level

(a) Average costs of electricity (b) Average costs of natural gas

(c) Quantity of electricity (d) Quantity of natural gas

Note: The figures show average causal effects of the expiration of a fixed-price contract on the average cost of
electricity and natural gas (panels (a) and (b)) and the corresponding demanded quantities (panels (c) and (d)).
Outcome variables are always in logs. Average causal effects before and after the treatment are estimated in
two separate regressions, using the “imputation” estimator by Borusyak et al. (2021), as described in Section 5.
Confidence intervals are at the 95% level.
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6.a Effects on energy prices

In panel (a) we see that the retail price for electricity significantly increases when the fixed-
price contract expires, while there is no pre-trending of causal effects before the treatment
actually takes place.23 One year and a half after expiration, the increase is 47% relative to
the baseline, quite precisely estimated. We find a similar pattern in panel (b), when looking
at the retail price for natural gas. Again, there is no evidence of a pre-trend24 and estimates
are precise. One year and a half after expiration, the increase is equal to 29% compared to
the baseline. Cohort-specific estimates, reported in Appendix J, show that the results are
not driven by any specific cohort, and that magnitudes are similar across them. Synthetic
diff-in-diff estimates (Arkhangelsky et al., 2021), reported in Appendix F, show that the
timing and magnitude of the results hold for every cohort in isolation when using only
the “pure control group” as a comparison. From an econometric standpoint, this evidence
provides support to the validity of our design and of the coding of our treatment variable.25
From an economic standpoint, our findings highlight the importance of fixed-price inventory
contracts, routinely used by firms for a variety of inputs (Kumar and Wesselbaum, 2024), in
the transmission of macro shocks.

6.b Effects on energy demand

In panel (c) we study the (log-)quantity of (purchased) electricity. Despite the large price
increase, this outcome does not respond to the treatment. Coefficients are positive, close to
zero and confidence intervals are tight. We interpret these as precisely estimated zeros. We
do not find evidence of treatment effect heterogeneity26.

In panel (d) we investigate what happens to the (log-)quantity of natural gas. Here we detect
a different pattern. In the first treatment period, the point estimate is virtually zero. In
the second, it becomes negative, and more so in the third. The coefficient corresponding to
the last period implies that natural gas consumption decreases around 32% compared to a

23The p-value of the pre-trend test is 0.13.
24The p-value of the pre-trend test is 0.39.
25These results also underline that commonly used shift-share identification strategies (Linn, 2008; Ganapati

et al., 2020; Marin and Vona, 2021), which combine nation-wide swings in energy prices and cross-sectional
variation in energy intensity, may suffer from measurement error, as noted by Lafrogne-Joussier et al. (2023).
The implicit assumption behind these strategies is that all firms are exposed to the same fluctuation in energy
prices at the same time. Our results cast doubt on this assumption by showing that firms face largely different
prices depending on their contractual arrangement and the exact timing of contract expiration.

26The estimated effects are very similar between firms that cover part of their electricity consumption by
generating their own power from renewable sources, and other firms. Furthermore, they are also very similar
between electricity intensive and other firms; for the former group the results are confirmed by a companion
analysis of monthly electricity consumption from administrative sources (see Appendix I).
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counterfactual with no price increase. By visually inspecting the graph, we can see some
evidence of a pre-existing downward trend in the case of gas, which may confound at least
part of the effect.27 We probe the validity of this result with a synthetic diff-in-diff exercise à
la Arkhangelsky et al. (2021), which matches explicitly on the pre-trends. Results, reported
in Appendix F, confirm a similarly large decline.

What explain this delayed response in gas consumption? It could be due to both cohort
and calendar factors. On one hand, earlier treated cohorts might have more time to adjust.
On the other hand, the crisis worsened over time after Russia invaded Ukraine, thus not all
semesters are alike. One of the advantages of our staggered design is that we can disentangle
whether the dynamics of the effect are driven by cohort or calendar factors.

In the lower panel of Figure 6.2 we display average causal effects separately by cohort. In
the second half of 2021, only the “early treated” (black triangles) had already experienced
the energy price shock, but the treatment effect on the quantity of gas is zero. In the first
semester of 2022, the effect is again zero both for the “early treated”, and for the “mid treated”
(red circles), which experienced the shock for the first time in that period. Finally, all cohorts
display a large negative effect in the second half of 2022, which corresponds to the first period
since the shock for the “late treated” (blue diamonds), to the second for the “mid treated”,
and to the third for the “early treated”.

Overall, we find that the negative effects in gas consumption are exclusively driven by what
happens in the second half of 2022, while time elapsed since contract expiration does not
matter, as all treated cohorts in a given calendar time period have similar coefficients. The
exact same dynamics emerge in the synthetic diff-in-diff exercise, reported in Appendix F.

Why do firms adjust exclusively in the second half of 2022? First, we check whether the
magnitude of the energy price shock was very different across calendar periods or, in other
words whether the quantity reductions are different, but the demand elasticity is constant.
This does not seem to be the case. The upper panel of Figure 6.2 shows that, despite the
treatment effect on the price is slightly increasing over calendar time, this cannot explain
the heterogeneity in quantity adjustments.28 This conclusion will be confirmed in Section E
where we combine our estimates to derive the price elasticity of demand.

27The p-value of the pre-trend test is 0.05.
28The fact that the effect on the firm-level energy price is very similar in the first and second half of 2022 is

only apparently inconsistent with the evolution of the wholesale price depicted in Figure 2.1. In fact, while it is
true that the wholesale price reaches its peak in the third quarter of 2022, in the last quarter it falls back to the
same levels observed in the first semester of 2022. Since consumption is typically lower in the summer months,
the consumption-weighted average wholesale price in the last semester of 2022 is probably not much higher
than in the previous semester.
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Figure 6.2: Natural gas: heterogeneous effects by cohort

(a) Average cost

(b) Quantity

Note: the estimates in the upper and lower panel are from the same regression as in panel (b) and (d) of Figure
6.1 respectively; here they are reported by each cohort separately. Confidence intervals at the 95% level.

Next, we check whether the expectation on the duration of the energy crisis was somewhat
different in the second half of 2022. Indeed, the 2022 summer was the period of highest market
pessimism about future evolutions of the crisis: the spot price reached its highest peak (see
Figure 2.1), and the futures market was pointing towards a long lasting crisis (see Figure B.1).
A story consistent with our results goes as follows: firms were playing a “wait and see”
strategy in 2021h2, when markets were expecting a short-lived crisis, and again in 2022h1,
when the wholesale gas price shot up after the invasion of Ukraine but rapidly decreased
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afterwards. The strategy changed in the summer 2022 amid fears that Europe could be in
short supply of natural gas in the forthcoming winter: presented with expectations pointing
towards a wholesale gas around 200 euro per MWh until mid-2023, many business leaders
decided to take action. The evidence is thus consistent with a “putty-putty” model with
adjustment cost (Pindyck and Rotemberg, 1983; Atkeson and Kehoe, 1999).

6.c Heterogeneity in demand response

Pooling across cohorts, the average effect on gas consumption in the second semester of
2022 is large (-35%) but confidence intervals remain wide (between -44% and -25% at the
95% level).29 A possible explanation has to do with treatment effect heterogeneity: it may
be that only some types of treated firms are able or willing to scale down energy demand,
while others cannot adjust or do not find it convenient. Assuming Cobb-Douglas production
function, economic theory would suggest that energy intensive firms should scale down
energy demand the most when its price rises. However, the production function of energy
intensive firms might be better approximated by a Leontief function, in which case energy
intensity would be associated with a smaller elasticity.

To explore this issue, we test whether treatment effects are heterogeneous along the following
covariates: a (self-reported) dummy for whether gas is an essential input in production30,
which can be thought as a proxy for Leontief production function; a gas intensive dummy31;
sector dummies; an EU ETS dummy; and employment in 2021.

To investigate treatment effect heterogeneity in a credible way, we turn to machine learning
(ML) techniques, which are becoming increasingly popular for this aim in causal analysis
and in particular in the context of randomized control trials (Haaland and Roth, 2020; Allcott
et al., 2020; Alpino et al., 2022). To the best of our knowledge, we are the first to apply
these tools in the context of staggered difference-in-differences. The estimator by Borusyak
et al. (2021) is particularly well suited for this, as it provides a treatment effect estimate for
each treated observation. We can thus use it as an outcome variable and use random forests

29Magnitude and precision are virtually unaffected when including firm-semester fixed effects, which control
for firm-specific seasonality. This robustness mechanically excludes the “early treated”, for which the second
semester is not observed both before and after treatment.

30The yes/no question comes from a different Bank of Italy survey (Business Outlook Survey of Industrial and
Service Firms, Sondtel) run in fall 2022 and reads: ”At the beginning of 2022, was gas an essential input for your
firms manufacturing process?". Essential inputs are defined as follows: Inputs are essential when given the
plants and machinery installed and used in the manufacturing process the total or partial lack thereof would
make it impossible to produce the good in the short term.

31The dummy is based on the official definition by the Italian legislation. Gas intensive firms must have
annual consumption above 1 GWh, belong to certain industrial sectors, and have gas intensity (measured as
expenditure for gas natural on sales and/or value added) above certain thresholds.
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to find its best predictors, in the spirit of Athey and Imbens (2016) and Wager and Athey
(2018). The advantages of this approach relative to a more traditional heterogeneity analysis
are twofold: a) the quest for heterogeneity is more efficient and also explores non-linear
combinations of the available covariates; b) the procedure is less prone to bias arising from
multiple hypotheses testing.

The ML analysis reveals three key predictors of treatment effect heterogeneity: the dummy
for whether natural gas is essential in the production process; the dummy for gas intensive
firms; the dummy for the EU ETS; the dummy for the food sector (see Appendix G for details
about the methodology and the results). Starting from the first dimension of heterogeneity,
in the second half of 2022 the average treatment effect is equal to -41% among firms for which
gas is not essential, and to -28% for other businesses.32 The result that firms for which gas
is essential reduce its consumption less when its price increases is not surprising, but it is
important for at least two reasons. First, this is a large group, accounting for approximately
40% of treated observations. Second, it includes all gas intensive firms.

Coming to the other dimensions of heterogeneity, the average effect is zero among gas inten-
sive firms, slightly positive in the food industry, and -19% among EU ETS firms. However,
it is difficult to draw definitive conclusions about the magnitude of these effects from the
Invind survey, considering the small sample size (respectively 22, 21 and 22 treated firms),
and that almost all of them also declare gas to be an essential input. In order to estimate the
effect among gas intensive firms more credibly, we turn to administrative data from the Fund
for Energy and Environmental Services (CSEA), where we observe gas consumption at the
monthly frequency. After matching this data with the fixed-price contract questions from
Invind, we run an higher-frequency version of our staggered diff-in-diff analysis on more
than one hundred gas intensive firms. Results, reported at length in Appendix H, support
the following findings: a) in the second half of 2022, the effect on gas consumption among
gas intensive firms is -8%, marginally not significant at conventional levels; b) the effect is
zero in the previous periods.

6.d Price elasticity of energy demand

The price elasticity of energy demand is an important parameter which affects quantitatively
the equilibrium responses derived in economic models. In our setting we can compute it by
combining our estimates of the effect of fixed-price contract expirations on (log) prices and
on (log) quantities. Since we only use within-firm variation, our estimate can be described as

32Both estimates are significant at the 99% level. The p-value of the test that the two effects are the same is
0.09.
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a “micro” elasticity. This behavioral response does not take into account the fact that part of
the input substitution process derives from factor reallocation across firms (and sectors), as
opposed to within firms (Bachmann et al., 2022). However, note that credibly identified micro
parameters are a useful disciplining device in macro models when used as target moments
(Nakamura and Steinsson, 2018).

In practice, we follow an IV-LATE approach, where we scale the average treatment effect
estimated in the quantity equation by the average treatment effect estimated in the price
equation.33 Under standard IV-LATE assumptions, we can construct an estimate of the
elasticity � as follows:

� =
4 �̂

@ − 1
4 �̂

? − 1
(4)

where �̂@ and �̂? are the estimates of, respectively, the average treatment effect on the log
quantity and on the log price of energy (Angrist et al., 2000). We construct standard errors
using the delta method (see Appendix E for details).

Figure 6.3 reports estimates by calendar period for the entire sample and for some selected
sub-samples. We do not report estimates by cohort because we find no heterogeneity along
this dimension.

As for electricity, the elasticity is always zero. At first glance, this result appears in contrast
with recent findings related to the pre-crisis years. For example, both Marin and Vona
(2021); von Graevenitz and Rottner (2022) and Fontagné et al. (2023) estimate an elasticity
between -0.4 and -0.5 using French and German data from the periods 1997-2015, 2009-2017
and 1996-2019, respectively. These studies however use comparably smaller shocks. Instead,
Gerster and Lamp (2023) finds electricity elasticities between -0.09 and -0.2 using a large
discontinuity in electricity prices (≈ 30%) faced by very large German firms. Moreover, also
von Graevenitz and Rottner (2022); Fontagné et al. (2023) find that this elasticity is smaller
with larger shocks and in later periods, consistently with our findings.

As for natural gas, our estimated average elasticity is equal to zero in the second half of 2021
and in the first of 2022, and equal to -1.1 in the second semester of 2022.34 This value is higher

33An alternative approach could be to regress the individual treatment effects from the price equation on
the individual treatment effect from the quantity equation following Deryugina et al. (2020). However, this
strategy is unfeasible in our application because we construct prices as the ratio between expenditures (in
monetary terms) and physical quantity (see section 3). Thus any measurement error in quantity will translate
in a measurement error of opposite sign in prices, thus yielding a negative correlation by construction. This
issue is reminiscent of the “division bias” discussed by Borjas (1980) in the context of using the ratio of earnings
and hours as a proxy for wage in the regression of hours on wages.

34In the case of natural gas, confidence intervals are particularly wide in the first semester 2021. This is due to
the fact that the first-stage is not very strong in that period because the insurance question was not fuel-specific
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Figure 6.3: Price elasticity of demand by calendar period

(a) Electricity (b) Natural gas

(c) Natural gas: essential or not (d) Natural gas: intensive or not

Note: the elasticity is computed as 4 �̂
@−1

4 �̂
?−1

where �̂@ and �̂? are the estimates of, respectively, the average treatment
effect on the log quantity and on the log price. Estimates in panel (a) combine effects from panels (a) and (c)
of Figure 6.1; estimates in panel (b), (c) and (d) combine effects from panels (b) and (d). The upper panels plot
average elasticities; the lower panel elasticities for selected sub-samples. Standard errors are constructed using
the delta method. Confidence intervals are at the 95% level.

compared to the older literature (Labandeira et al., 2017), but broadly in line with the recent
findings of Fontagné et al. (2023) (between -0.9 and -1.2). Furthermore, we find that in the
second semester 2022, gas elasticity is smaller in absolute value for firms for which gas is
essential (-0.5) and for gas intensive firms (-0.03) relative to their complement groups (-2.5
and -1.3). Although these exact values must be taken with caution due to the imprecision
of the estimates, they suggest relevant heterogeneity in gas elasticity across-firms. These
estimates are directly policy relevant. In Section 8 we use these estimates to compute by
how much natural gas equilibrium quantities change after the introduction of a per-unity

in the 2021 wave of our survey. For more details on this see Alpino et al. (2023).
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quantity subsidies.

6.e Input substitution

In this section we study whether the negative effect on gas consumption in the second half
of 2022 was partly compensated by a larger use of other fossil fuels. To this end, we turn to
administrative data on plants subject to EU ETS, for which we observe consumption of each
fossil fuel separately, although at the annual frequency. We use firm identifiers to match this
data to the Invind survey, which we use to define treatment cohorts. For this yearly design
we must collapse our original half-yearly treatment into a yearly treatment. Thus firms end
up being divided into three cohorts only: those that are treated in 2021, those that are treated
in 2022 and those that are never treated (a pure control group). We provided details on how
we construct these cohorts in Section 3.e. While on average natural gas is the main source
of fossil energy for factories in the EU ETS, they also consume half as much solid fuels (e.g.
coal). The use of other liquid (e.g. kerosene) or gas (e.g. LPG) fuels is much more limited.

In this section, we rely on an annual panel of plants which begins in 2018 and use outcomes
in levels to facilitate the comparison across fuels. Our test for input substitution is as follows.
First, we use consumption of natural gas as an outcome variable to confirm that our results
in the previous section extend to the EU ETS sub-sample, where 90% of the plants belong to
firms that declare gas to be an essential input. Panel (a) of Figure 6.4 shows that the effect
on gas consumption is indeed negative, building up over time. There is no evidence of a pre
trend.35 The effect is equal to -26 terajoules (Tj) in 2021 and -89 Tj in 2022, respectively -4% and
-14% relative to the 2018-2020 average36, in line with the evidence provided in the previous
sections. Second, we use total fossil energy consumption as an outcome variable, namely the
sum of natural gas plus all other fuels (e.g. coal, LPG, kerosene, lignite, gasoline, etc.). If
plants are able to completely substitute natural gas with other fuels, average treatment effects
would be exactly equal to zero. On the contrary, if plants cannot substitute gas with other
inputs, average treatment effects should be the same as when using natural gas as outcome.
Results, presented in the panel (b) of the same figure, lie between these two extremes. The
profile of the event-study is similar to the previous one, but attenuated in magnitude. The
effects are equal to +27 Tj in 2021 and -56 Tj in 2022; confidence intervals are wider. This
evidence suggests that input substitution is incomplete at best, as treated firms reduce their
total fossil energy consumption to a greater extent, relative to control firms. In other words,

35The p-value of the pre-trend test is 0.47.
36The second effect is statistically significant at the 95% level. Results are quantitatively very similar if we

estimate the model in logs.
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treated firms are unable or unwilling to completely offset the drop in natural gas by using
other fossil fuels. To further explore this issue, we study one by one the consumption of

Figure 6.4: Input substitution test among EU ETS plants

(a) Natural gas (b) Natural gas + other fossil fuels

(c) Other fossil gas fuels (d) Other liquid fossil fuels (e) Other solid fossil fuels

Note: The figures show average causal effects of the the expiration of a fixed-price contract on different outcomes
in levels. The outcome is reported underneath each event-study. Average causal effects are estimated on the
set of firms belonging to both the Invind and the EU ETS sample. Average causal effects before and after the
treatment are estimated in two separate regressions, using the “imputation” estimator by Borusyak et al. (2021),
as described in Section 5. Confidence intervals are at the 95% level.

different types of fuels, to test whether some of these are more of a substitute in the recent
crisis. The event studies (reported at the bottom of Figure 6.4) show that consumption of all
types of fossil fuel (other than natural gas) increases more in the treatment group than in
the control group, but confirms the idea that substitution was incomplete at best. In the case
of other gases, the increase is quantitatively negligible. For liquid fuels the effect is larger
(6 Tj in 2021 and 10 in 2022, both marginally insignificant a the 90% level), but still small
compared to the drop in natural gas (one tenth). In the case of solid fuels, the effect is large,
but it arises one period in advance, and it is larger in 2021 than in 2022, casting doubts on
the validity of the identifying assumptions.37 Overall, even though we can not rule out that
some firms managed to substitute natural gas with other fuels, it is safe to conclude that
input substitution was not the main explanation behind the drop in natural gas consumption

37The p-value of the pre-trend test is 0.02.
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identified in this work, at least in case of plants subject to the EU ETS. Note that these
enterprises are different from the average firm and in particular from those for which natural
gas is not essential, which is the group that reduce the most its gas consumption, according
to our results.

Even when restricting the attention to EU ETS firms, one limitation of this exercise is that
in our data we only observe fossil fuels, while substitution might occur via other fuels (e.g.
hydrogen or electricity). As for electricity, as already noted elsewhere in this paper, its price
was increasing in tandem with natural gas during the recent crisis. As a consequence it
would have made little economic sense to substitute one with the other. As for hydrogen,
despite recent efforts to promote it in industry at the EU level, its use is still residual in Italian
industry.38 Finally, our analysis does not exclude the possibility of substituting energy by
importing energy intensive intermediate goods from outside Europe, a channel emphasized
by Moll et al. (2023). Unfortunately, at the moment we lack data to test this hypothesis.

7 Effects on output prices, production and profit margins

When firms cannot substitute away from more expensive inputs, they have two other options
at their disposal. On the one hand they could reduce the quantity of output they produce;
on the other hand they could pass on some of the cost increases to consumers via higher
prices. The combination of lower output, higher prices, together with input substitution,
will be reflected in their profit margins.

In this section we study these margins of adjustment by exploiting a longer yearly panel
of firms that answered the Invind survey over the 2018-2022 period. Since not all firms
are interviewed in all years, and do not answer to all questions, we are forced to use an
unbalanced panel of firms. As detailed in Section 3.e and similarly to Section 6.e, we collapse
our original half-yearly treatment into a yearly treatment. Thus firms end up being divided
into three cohorts only: those that are treated in 2021 (corresponding to the "early treated"
in the previous analysis), those that are treated in 2022 (corresponding to the "mid treated")
and those that are never treated (a pure control group). Aside from this, the regression
model is exactly the same as in Section 5. We consider three outcomes at the firm level
that are available in the Invind survey: the yearly growth rate in the prices of goods sold39;
the average degree of plant capacity utilization, defined as a percentage of the maximum

38According to the Italian National Strategy for Hydrogen the share of hydrogen in final energy consumption is
at 2% in the country and less than 1% in “hard to abate” industries like chemicals or refineries.

39The level of prices is not available in the Invind survey
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output attainable with the given capital40; and a dummy for whether the profit margin is
strictly positive. The yearly sample we use in this analysis is similar to the half-yearly one
used in previous sections. We detect no appreciable difference both in terms of sectoral and
geographical composition. Firms in the yearly sample have a lower probability of declaring
that gas is an essential input (37% vs 54% in the half-yearly sample) and of being energy
intensive firms, according to the Italian legislation (21% vs 30% in the half-yearly sample).
For completeness, in Table A.3 of Appendix J we report summary statistics.

Event-studies are depicted in Figure 7.1 while estimates by calendar year are reported in
Table 7.1. Table 7.2 reports heterogeneous treatment effects for year 2022 according to the
same categories used in the previous sections.

Figure 7.1: The effect of energy price-protection lifting on prices, capacity utilization and profit

(a) Change in price (%) (b) Capacity utilization (%) (c) Positive profit (0/1)

Note: The figures show average causal effects of the expiration of a fixed-price contract on different outcomes,
reported underneath each event-study. Samples are different across the three panels. Average causal effects
before and after the treatment are estimated in two separate regressions, using the “imputation” estimator by
Borusyak et al. (2021), as described in Section 5. Confidence intervals are at the 95% level.

Starting with the first outcome, we find that when treated firms see their fixed-price contract
expire, they increase their final price less than the control group. The effect is equal to -2.7
percentage point, not significant at conventional levels, and it is entirely driven by what
happens in 2022. Note that in that year, the average price increase was around 11 per cent,
and no firms decreased its price. So our results suggests that, amid generalized upward
price pressure, firms exposed to energy price shock did not increase their price more than
other businesses. How to rationalize this finding? First, there is mounting evidence that
firms’ price updating decisions do not depend much on idiosyncratic cost shocks, but rather
on rivals shocks (via strategic complementarities) and on market-wide cost shocks (Amiti
et al., 2019; Muehlegger and Sweeney, 2022; Duprez and Magerman, 2018). If these models
of price formation are a good representation of reality, our reduced form approach is not

40The survey records also changes in capacity relative to the previous year; we adjust our outcome to account
for this to get a good measure of physical output.
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appropriate to gauge the the effect of the energy crisis on inflation, because it can only
identify partial equilibrium effects. Second, even if idiosyncratic shocks matter, identifying
their effect for the average firm is quite challenging because the share of energy cost on firms’
variable cost is very low on average Alpino et al. (2022). Indeed, our heterogeneity analysis
reveals that when focusing on firms for which energy represents a larger fraction of their
costs (gas intensive and EU ETS firms), the treatment effect is positive, large and significant.
In this respect, our findings are in line with Lafrogne-Joussier et al. (2023), who estimate the
pass-through of energy shocks on producer prices in the recent crisis. They find that, due the
relatively small share of energy in firms’ variable costs and despite substantial pass-through
of positive shocks, the recent energy price surge only moderately impacted manufacturing
inflation.

Table 7.1: Average treatment effects by calendar year

Annual price change (%) Capacity utilization (%) Profit>0 (0/1)
(1) (2) (3)

2021 0.58 0.02 -0.00
(1.20) (1.75) (0.03)

2022 -2.73 -1.89 -0.10∗∗∗
(1.66) (2.52) (0.04)

N 2887 3655 3464

Note: the table reports point estimates and standard errors of the treatment effects
by calendar year from the same regressions as in Figure 7.1.

Coming to the second outcome, we estimate that upon contract expiration treated firms
reduce capacity utilization by less than 2 percentage points in 2022. The drop is quite small,
considering that capacity utilization is on average around 80 per cent in the sample years.
We do not find evidence of treatment effect heterogeneity. How to rationalize the the limited
responsiveness of physical output with the large drop in input identified in the previous
sections? We believe there are at least three non mutually exclusive explanations. First,
natural gas only drops in the second semester, while capacity utilization refers to the average
over the year. Second, our measure of capacity utilization might understate changes over
time. Lacking hard data to answer this question, some respondents might be tempted to
provide the same figure as in the previous year. Third, firms might be able to substitute
natural gas might other non-energy inputs, and keeping output unchanged. Unfortunately,
our data does not allow us to discriminate between these possibilities.
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Finally, we find that being exposed to the energy shock reduce the probability to have a
positive profit margin by 10 percentage points in 2022. The effect is sizable, considering that
over our sample period approximately 80 per cent of firms declare to have positive profits.
The drop is widespread with the exception of the EU ETS firms, for which the effect is zero;
note that this is the group for which we estimated the largest positive effect on the growth of
final prices.
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Table 7.2: Heterogeneous treatment effects in 2022 by type of firm

(a) Annual price change (%)

Gas essential Gas intensive EU ETS Electricity intensive
(1) (2) (3) (4)

No -4.47∗∗ -3.34∗∗ -3.44∗∗ -4.21∗∗
(1.75) (1.68) (1.67) (1.68)

Yes 1.81 9.09∗∗ 18.29∗∗∗ 2.68
(1.90) (3.89) (5.06) (2.15)

P-value equality test 0.00 0.00 0.00 0.00

(b) Capacity utilization (%)

Gas essential Gas intensive EU ETS Electricity intensive
(1) (2) (3) (4)

No -2.05 -1.93 -1.88 -1.90
(2.64) (2.53) (2.53) (2.60)

Yes -1.06 -1.25 -2.21 -1.85
(2.98) (4.27) (3.68) (2.94)

P-value equality test 0.66 0.85 0.91 0.98

(c) Profit>0 (0/1)

Gas essential Gas intensive EU ETS Electricity intensive
(1) (2) (3) (4)

No -0.11∗∗∗ -0.10∗∗∗ -0.10∗∗∗ -0.10∗∗
(0.04) (0.04) (0.04) (0.04)

Yes -0.12∗∗ -0.09 0.00 -0.11∗
(0.05) (0.09) (0.07) (0.06)

P-value equality test 0.96 0.95 0.12 0.82

Note: the table reports point estimates and standard errors of the treatment effects
in 2022 by different types of firms from the same regressions as in Figure 7.1. The
outcome variable is reported above each panel. The row "No" refers to the firms for
which the dummy on top of each column is switched off; the row "Yes" refers to the
firms for which the dummy on top of each column is switched on. The last row reports
the p-value of the test that the two treatment effect in the column are equal to each
other.
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8 Policy implications

Our results bear policy implications for the design of support measures aimed at firms during
energy crises. Such tools were popular in the EU during the recent 2021-22 crisis. According
to recent estimates by Bruegel, since March 2022 EU governments allocated around e 670
billion to help businesses face energy shocks (McWilliams et al., 2024). In spite of their
popularity, several economists were concerned that these policies would exacerbate the
crisis if designed in such a way to reduce the marginal price of energy faced by firms. In fact,
this would amount to subsidize the demand for energy thus reducing the incentive to save
it at a time of very short supply (Gros, 2022; Signorini, 2022).

Unintended upward pressure on energy demand could be avoided if policies were targeted to
firms with a demand elasticity close to zero. In the paper we show that firms’ price elasticity
of demand was close to zero for electricity, while demand was somewhat more responsive in
the case of natural gas, although only in the second half of 2022. Our heterogeneity analysis
highlights an important distinction in the case of gas. The price-responsiveness is almost
entirely explained by firms for which gas is not an essential input. To the contrary, the
remaining group, which also includes almost all gas-intensive firms, displays an elasticity
close to zero.

In order to avoid or mitigate unintended demand responses, it follows that support measures
should target firms for which gas is an essential input or, alternatively, gas intensive firms,
which is an observable characteristic. In the Italian context, the subsidies were initially
targeted to energy intensive firms for both electricity and natural gas consumption, but they
were expanded to all firms later in the crisis. Our results suggest that such expansion in case
of natural gas consumption might have caused some upward pressure on demand.

To get a sense of the quantitative magnitude of these policy implications in the case of natural
gas, we follow Deryugina et al. (2020) in presenting some simple calculations calibrated to the
Italian context. Between 2015 and 2019, industrial gas consumption in the second semester
of the year was equal to 6,700 million of Standard Cubic Meters (SCM) on average (source:
SNAM, the network operator); the average retail price in the business sector was equal to
1.35 euro per SCM in the second half of 2022 (source: Eurostat).41 Assuming for simplicity
that the market for industrial gas deliveries is perfectly competitive, the introduction of a
per-unit subsidy B on the price % would result in an increase of the equilibrium quantity &

41Eurostat computes this price as the average cost per unit of energy net of taxes. As such, this price already
include government aid in the form of reduced taxes and fees, but does not include the subsidy which took the
form of a tax credit.
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which depends on the (absolute value) of the demand &( and supply &� elasticities:

%&

%B
=

&(&�
&( + &�

&

%
=

1
1/&( + 1/&�

&

%
. (5)

Figure 8.1: Effect of a subsidy on equilibrium gas consumption

Note: The figure shows the percentage increase in the equilibrium quantity of gas purchases induced by a 50
cent subsidy for different values of demand and supply elasticities. It is calculated according to the formula
in (5) and scaled by the baseline quantity; & is set equal to 6,700 million of Standard Cubic Meters (SCM) and
% to 1.35 euro per SCM. Vertical dotted lines are drawn in correspondence of some values of the elasticity of
demand estimated in the paper: 0.5 (firms for which gas is essential), 1.1 (average) and 2.5 (firms for which gas
is not essential.

Supply of gas is usually considered quite inelastic in the short term, but there is scarce
evidence regarding its magnitude. As a first exercise, we assume a very low supply elasticity.
In particular, we follow Albrizio et al. (2022) and use the value &( = 0.06, as estimated by
Krichene (2002). In this case, if one were to use our average estimates of the demand elasticity
(&� = −1.1), a 50 cent price subsidy would increase the equilibrium quantity by 141 million
of SCM (2%) in the second half of 2022. Such effect would be only marginally lower using the
value for firms for which gas is essential (&� = −0.5) and marginally higher using the value
for firms for which gas is not essential (&� = −2.5) (red line in Figure 8.1). Intuitively, in this
case the supply curve is so inelastic that producers can cash in a great share of the subsidy

35



without increasing quantities much and irrespective of the demand elasticity.

As a second exercise, we consider a slightly higher value of the supply elasticity, which is
a more sensible assumption in our context. Italy has a very developed natural gas infras-
tructure: three LNG terminals and five pipelines connecting it to several producers other
than Russia (Azerbaĳan, Algeria, Lybia and Northern Europe). In 2022, to the surprise of
many commentators, Italy managed to secure new large gas delivery contracts from these
countries; the annual increase in import from these suppliers (14.8 billion of SCM; +34%)
almost offset the drop in imports from Russia (15 billion of SCM). These are large numbers,
roughly equal to the annual consumption of the Italian industrial sector. Thus, in our second
exercise we assume an higher supply elasticity, namely &( = 0.2. In this case, how large
is the demand elasticity becomes important (see blue line in Figure 8.1). When assuming
&� = −0.5, the subsidy-induced increase in quantity is equal to 350 million of SCM (+5%),
while when assuming &� = −2.5, the increase is equal to 460 million of SCM (+7%).42

9 Conclusions

We provide evidence on the effect of large energy price shocks on firms. We do so with a
novel identification strategy based on the staggered expiration of fixed-price energy contracts,
which expose some businesses to spikes in energy prices sooner rather than later. In our
difference-in-differences design, we estimate that during the 2021-22 crisis average unitary
costs for exposed firms increased up to 45% and 30% for electricity and gas respectively.
Despite this sizeable shock, the demand adjustment is relatively small. Firms do not cut
electricity consumption, and reduce natural gas only in the second half of 2022 (-35%).
Furthermore, this drop is very heterogeneous across firms. In particular it is smaller for
those declaring natural gas to be an essential in their production process, which include gas
intensive firms that account for 20% of national consumption.

Additional evidence suggests that the drop in gas consumption was not fully compensated
by substitution with other inputs, and that, as a consequence, output fell somewhat. Further-
more, we find that the idiosyncratic energy price cost shocks that we identify do not induce
a significantly higher increase in the price of final output and decreases the probability of
reporting positive profits, in a context of generalized upward price pressure.

42Notice that in presence of heterogeneous elasticities, it is not clear which one should be used in the
calculation, as it depends on whether the marginal consumer is a firm for which gas is essential or not.
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Appendices

Appendix A Questionnaires

Figure A.1: Survey questions for the energy section

(a) 2021 wave

(b) 2022 wave

Note: The figures displays the original questionnaires of the energy section of the Invind survey, both in the 2021 and 2022 wave.
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Appendix B Background pictures

Figure B.1: Expectations on wholesale gas price (TTF) implied by futures

Note:The figure shows futures curve for the Title Transfer Facility (TTF) price at three different points in time:
September 2021 (in blue), March 2022 (in red) and September 2022 (in green). The first point of each line is the
spot price at that date.
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Figure B.2: Fossil fuel energy mix for firms in the matched EU ETS - Invind sample

Note: The figure displays the average consumption of different fossil fuels (measured in Terajoules, TJ) for firms
belonging to the matched Invind-EU ETS sample.
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Appendix C Validation of survey answers

In this Appendix we detail the validation procedure implemented to check the quality of
the Invind survey data. Considering that respondents might not be familiar with physical
units of measurement, we verify whether quantities and costs of gas and electricity assume
plausible values. To this end, we implement the algorithm described below.

First, we exclude from our sample of interest the firms that did not reply to all the energy-
related questions. Note that consumed quantities must be strictly positive to be able to
compute a valid retail price of energy inputs.

We then rely on two references to cross-check the plausibility of the Invind replies. In fact,
given that respondents might not be familiar with physical units of energy, excessively high
or low figures might indicate that respondents got the order of magnitude wrong, e.g. kWh
instead of MWh. Hence, we recover the type of systematic mistake made for those replies
taking on implausible values. To this end, we resort to two criteria based on year- and
semester-specific parameters, and defined for electricity and natural gas separately.

We compute the average unitary price paid by firms for each semester and compare it with
the corresponding average price recorded by Eurostat for the Italian market. The Invind and
the Eurostat prices are constructed similarly, as they both include levies and taxes. However,
Eurostat includes all non-household consumers, while we only have industrial firms with at
least 50 employees. Therefore, we adopt a loose criterion and flag only those observations
in which the unit price is not included in a price range defined as half the minimum price
and double the maximum of the reference Eurostat statistics across consumption classes and
semesters.43 We employ a second criterion44 based on the examination of the ratio between
energy costs and turnover. We flag observations above and below the 99th and 1st percentile
of the distribution45, respectively. These correspond to cost-turnover ratios above 50% and
below 0.1%, respectively. Combining the two criteria, we identify 6 error categories for the
firm-level replies on electricity and 4 categories for the ones on natural gas (Table C.1). This
exercise is performed for both semesters separately. In 18.7 and 2.8% of the electricity-related
replies and 21 and 6.4% of the gas-related replies in the 2021 and 2022 wave respectively,
we observe a consistent mistake across semesters and rescale the values accordingly. Only

43In light of the upward trend in prices over time, While the parameter of the maximum price is semester-
specific, the lower-bound of the price distribution is considered constant over time and equal to half the
minimum price reported by Eurostat in the first semester of 2021.

44Given that our unit prices in the Invind data could be out of the sensible range because of mistakes in filling
in total expenditure (i.e the numerator) and/or the consumption quantity (i.e. the denominator), we need two
criteria to reconcile implausible unitary prices with specific errors in the units of measurement.

45The percentiles are computed over the unweighted set of firms with strictly positive costs.
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firms replying with (possibly rescaled) valid values in all 4 semesters are part of the final
estimation samples.

Next, we examine the coherence of the stated quantities against administrative data collected
by CSEA. This latter record is available only for the subsample of energy intensive firms
(energivore and gasivore). Whenever the difference between the two figures differ by more
than 35% in absolute value for at least one semester, we conservatively drop the firm from
the estimation sample. The scatterplots of Figure C.1 are reassuring insofar as both the non-
manipulated and the manipulated quantities lie very close to the 45-degree line, indicating
that our data match administrative records pretty well and that our correction alghoritm
works well.

As regards natural gas quantities, and limited to firms with plants subject to the EU-ETS, we
can perform the same check also on the administrative records collected by ISPRA. In this
exercise though, firms are excluded from the sample only in case the reported quantities are
smaller than the ETS ones. On the contrary, larger values are compatible with multi-plant
firms having lines of production not emitting CO2 emissions.

These two steps combined lead to 45 and 28 firms eliminated from the electricity and gas
estimation sample, respectively.
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Table C.1: Validation of data quality: units of measurement in quantities and expenditure

(1) (2) (3) (4) (5) (6)
Cost-share criterion Price-range criterion Expenditure Quantity Prevalence

2021 2022

Panel A: Natural gas

3 3 000 e SCM 70% 90%
7 - upper tail 7 - higher price (000-fold) e SCM 3% 0%
3 7 - higher price (000-fold) 000 e 000 SCM 18% 4.9%
3 7 - higher price (million-fold) 000 e million SCM 0% 0.7%
7 - lower tail 7 - lower price Million e ’000 SCM 0% 0.8%

Residual observations (dropped) 9% 3.6%
Total 100% 100%

Panel B: Electricity

3 3 000 e Mwh 71.7% 94.2%
3 7 - lower price 000 e Kwh 14.3% 1.9%
7 7 - higher price e Mwh 2.7% 0.1%
7 3 e Kwh 2.3% 0.1%
3 7 - higher price 000 e Gwh 0% 0.7%
7 - lower tail 3 Million e Gwh 0% 0.3%
7 - lower tail 7 - lower price Million e Mwh 0.1% 0%
7 - lower tail 7 - lower price Million e Twh 0.1% 0%

Residual observations (dropped) 7% 2.8%
Total 100% 100%

Note: The table presents the result of the data validation procedure. As respondents might be unfamiliar with physical units of measurement,
we reviewed the plausibility of the expenditure and quantity replies, separately for gas (Panel A) and electricity (Panel B). Depending
on whether unitary prices satisfy two reference criteria (Column 1 and 2), observations are sorted into mutually exclusive compilation
mistakes. In more details, the two checks allow us to determine the univocal units of measurement used by the respondent (Column
3 and 4) compatible with the mistake category. This exercise is performed for both semesters. In case we observe a consistent mistake
across semesters, we rescale the values with the goal of harmonising all observations in terms of thousands of euro for expenditure,
and Mwh and SCM for purchased quantities of electricity and natural gas, respectively. We operate this correction in 18.7 and 2.8% of
the electricity-related replies and 21 and 6.4% of the gas-related replies in the 2021 and 2022 wave, respectively (Column 5 and 6). The
distributions are unweighted.
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Figure C.1: Consistency with other data sources

(a) Electricity consumption in 2021 (b) Natural gas consumption in 2021

(c) Electricity consumption in 2022 (d) Natural gas consumption in 2022

(e) Gas consumption in 2021 (f) Gas consumption in 2022

Note: The figures show the consistency between data sourced via the Invind survey and quantities of electricity and natural gas recorded
in administrative data for a sub-sample of firms belonging to the energivore and gasivore lists (panel (a) and (b) for 2021, and panel (c) and
(d) for 2022) and to the EU-ETS (panel (e) and (f)).
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Appendix D Non-response bias

In this section we examine the robustness of our findings to a correction method called
“inverse probability weighting”(Wooldridge et al., 2002; Stantcheva, 2022). This method is
commonly used to address differential attrition by utilizing the relationships among observed
covariates to re-weight the observed data to approximate the distribution in the full data set
(Stantcheva, 2022; Glynn and Quinn, 2010). In practice, we run our baseline specification
weighting observations by the inverse of the probability of being part of the respective
estimation sample. The latter probability is obtained as the propensity score from estimating
by logit equations 6 and 7, where -8 include covariates measured at baseline.46.

1(Electricity sample8) = -′
8�
4 + �8 (6)

1(Gas sample8) = -′
8�
6 + �8 (7)

Figure D.1 graphically indicates that for electricity and gas samples separately, the support
of the propensity score overlaps between out of sample and in sample observations. We
test and verify the balancing of covariates within bins (or “blocks”) of the propensity score
following Becker and Ichino (2002).

In Figure D.2, we compare our baseline results with those obtained by rerunning the same
specification with inverse probability weighting. The two sets of results are remarkably
similar, mitigating concerns about item non response biasing our results.

Figure D.1: Common support of propensity score

(a) Natural gas sample (b) Electricity sample

Note: The figures show the distribution of the propensity score of out of sample and in sample observations.

46We include total sales, total investment, dummies for size class, sector dummies, macroregion dummies,
a dummy for being in the EU ETS, a dummy for being an electricity intensive firm, a dummy for being a gas
intensive firm
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Figure D.2: Inverse-probability-weighted estimates

(a) Price of natural gas (b) Price of electricity

(c) Gas demand (d) Electricity demand

Note: The figures show average causal effects of the expiration of a fixed-price contract on the average costs of electricity and natural gas
(panels (a) and (b)) and the corresponding demanded quantities (panels (c) and (d)). The charts compare our baseline results (in black)
with those obtained by rerunning the same specification with inverse-probability weighting (Wooldridge et al., 2002; Stantcheva, 2022).
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Appendix E Inference of elasticity

We derive the standard errors of the IV-style elasticity using the delta method. The elasticity
of interest is:
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is the 2x2 variance covariance matrix obtained using the formula in Theorem 3 in Borusyak
et al. (2021).

The variance of the elasticity is thus
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Appendix F Synthetic diff-in-diff

Motivated by the possibility of underlying pre-trends in the event study graphs presented in
the main body of the paper, we probe the robustness of our results with an alternative design
that explicitly matches on the path of pre-treatment outcomes: the synthetic difference-in-
differences (SDID) estimator (Arkhangelsky et al., 2021).47

We follow the procedure outlined in Clarke et al. (2023) to implement the SDID method

47Note that this estimator requires a balanced sample and does not allow weights. When we replicate the
staggered diff-in-diff analysis without weights the results are virtually unchanged.
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in the staggered case and conduct valid bootstrap inference. Figure F.1 reports the event-
study for electricity and in Figure F.2 for natural gas. We present the results for the three
treatment cohorts separately. In all of the three cases, the donor pool comes from the pure
control group. Naturally, the pre-trend matching uses more pre-treatment period for the
“late treated” than for the “mid treated” and “early treated”, as we only have four periods at
disposal.

The estimates of the treatment effects are very similar to those estimated in the staggered
diff-in-diff. This shows that our research design is robust to the choice of different estimation
techniques that take pre-trends explicitly into account.

In addition, as in the staggered diff-in-diff, all of the three cohorts display very similar
treatment effects. Thus, this exercise confirms that the results are not driven by any specific
cohort. Finally, the synthetic diff-in-diff shows that the negative treatment effect on the
quantity of gas is driven only by what happens in the second half of 2022.
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Figure F.1: Synthetic diff-in-diff estimates of the effect of price-protection lifting on retail electricity
price and quantities of electricity

(a) Price of electricity for “early treated” (b) Quantity of electricity for “early treated”

(c) Price of electricity for “mid treated” (d) Quantity of electricity for “mid treated”

(e) Price of electricity for “late treated” (f) Quantity of electricity for “late treated”

Note: The figure shows average causal effects of price-protection lifting according to the SDID method in the
staggered case. The outcome variable is always in logs. Bootstrapped confidence intervals are at the 90% level.
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Figure F.2: Synthetic diff-in-diff estimates of the effect of price-protection lifting on retail gas price
and quantities of gas

(a) Price of natural gas for “early treated” (b) Quantity of natural gas for “early treated”

(c) Price of natural gas for “mid treated” (d) Quantity of natural gas for “mid treated”

(e) Price of natural gas for “late treated” (f) Quantity of natural gas for “late treated”

Note: The figure shows average causal effects of price-protection lifting according to the SDID method in the
staggered case. The outcome variable is always in logs. Bootstrapped confidence intervals are at the 90% level.
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Appendix G Effect heterogeneity with machine learning

Our focus is on the effect on gas consumption in the second semester of 2022. We use random
forests in the spirit of Athey and Imbens (2016) and Wager and Athey (2018). First, we split
the treated observations in two random subsamples: a learn subsample (60 per cent of the
overall sample) and a test subsample (40 per cent). Second, we build a forest of 5,000 trees
using the learn subsample only. Each tree can pick only a random half of the considered
covariates. Third, we use the forest to predict treatment effects out-of-sample in the test
sample. Finally, we test whether machine learning (ML) predictions carry over to the test
sample. The sample splitting approach ensures that overfitting does not drive our results.

Figure G.1 plots the distribution of individual treatment effects as estimated by the Borusyak
et al. (2021) imputation method (in blue), as predicted by ML in sample (black) and out of
sample (red). The point estimate is always very close to -0.45 across the three distributions.48
The blue distribution is very dispersed. However note that this variation could be due to
treatment effect heterogeneity (along observables or unobservables) or due to noise (Borusyak
et al., 2021), as individual treatment effects contain the error term &8 9C in equation 3. The
distribution of in-sample-ML-predicted treatment effects (in black) is much less dispersed,
but still displaying economically relevant heterogeneity and including values around zero
for some observations.49 The distribution of out-of-sample-ML-predicted treatment effects
(in red) is similar to the black one, but even more compressed, with the difference plausibly
due to overfitting in the in-sample predictions. Still, the red distribution has a support going
from -1 and zero; this means that the forest predict that some treated firms would decrease
gas consumption by as much as 60 per cent, while others would not change it at all.

In order to understand which observables predict heterogeneity in treatment effects, and
in which direction, we first regress the in-sample-ML-predicted treatment effect on each
covariate separately (see Table G.1). The forest predicts that firms having lower-than-average
treatment effects (i.e. a small gas demand reduction) are concentrated: in the food sector;
in the chemicals-pharmaceutical-rubber sector; firms declaring natural gas to be an essential
input; those subject to the EU ETS; the gas intensive ones according to the Italian state aid
regulation. Firms having higher-than-average treatment effects (i.e. a large gas demand
reductions) are those in the wood and paper industry. The results are confirmed in the
test sample when using as an outcome variable the out-of-sample-ML-predicted treatment

48Note that here we refer to the point estimates, and not their exponential transformation that we comment
in most of the paper.

49This suggests that the extreme values in the blue distribution are probably due to noise, although we cannot
rule out that they are due to treatment effect heterogeneity along unobservables.
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Figure G.1: Distribution of treatment effects on gas demand in 2022h2

Note: The figure shows the distribution of individual treatment effects in 2022h2. The outcome is natural gas
consumption.

effects (Table G.2). In order to test whether these results represent true heterogeneity and
not a statistical fluke due to overfitting, we estimate the same regressions in the test sub-
sample using as an outcome variable the estimates of the treatment effect obtained with the
Borusyak et al. (2021) method. If treatment effect heterogeneity is real, we would expect to
see the same signs and similar coefficients in these data, because the Borusyak et al. (2021)
estimates in the test sample were never used to train the forest. Results are presented in
Table G.2. For some covariates, signs are different and/or coefficients are greatly attenuated,
but some of the predictions are confirmed out-of-sample, both in terms of sign and size of
the coefficients. In particular, four (non mutually exclusive) groups of observations display
lower gas adjustment than the average: firms in the food industry, firms declaring that gas
is an essential input, firms in the EU ETS, and gas intensive firms. We take this as evidence
that treatment effect heterogeneity exists in this context along these covariates.
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Table G.1: Characterizing in-sample predictions of treatment effect heterogeneity

in-sample ML predictions of treatment effects
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Food (0/1) 0.384∗∗∗
(0.03)

Textiles appareal (0/1) -0.0847
(0.06)

Chem., pharma., rubber (0/1) 0.0953∗∗
(0.04)

Non-metallic minerals (0/1) -0.0825
(0.14)

Metalworking (0/1) -0.0324
(0.04)

Wood, paper, furniture (0/1) -0.195∗∗∗
(0.06)

Water, waste (0/1) -0.109
(0.12)

Nat. gas indispensable (0/1) 0.157∗∗∗
(0.04)

Employment (heads) -0.0000121
(0.00)

EU ETS (0/1) 0.135∗∗∗
(0.05)

Gas intensive (0/1) 0.169∗∗∗
(0.04)

R2 0.21 0.01 0.02 0.00 0.00 0.08 0.01 0.11 0.00 0.03 0.04
N 144 144 144 144 144 144 144 144 144 144 144

Note: OLS regressions in the learn sub-sample. The outcome variable is the treatment effect (on gas consumption
in 2022h2) as predicted by ML. Standard errors in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01.
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Table G.2: Characterizing out-of-sample predictions of treatment effect heterogeneity

out-of-sample ML predictions of treatment effects
(1) (2) (3) (4) (5) (6)

Food (0/1) 0.307∗∗∗
(0.04)

Chem., pharma., rubber (0/1) 0.0916∗
(0.05)

Wood, paper, furniture (0/1) -0.205∗∗∗
(0.06)

Nat. gas indispensable (0/1) 0.153∗∗∗
(0.04)

EU ETS (0/1) 0.126∗∗∗
(0.03)

Gas intensive (0/1) 0.141∗∗∗
(0.04)

R2 0.16 0.03 0.08 0.12 0.02 0.03
N 107 107 107 100 107 107

Note: OLS regressions in the test sub-sample. The outcome variable is the treatment effect (on gas consumption
in 2022h2) as predicted by ML. Standard errors in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01.
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Table G.3: Testing treatment effect heterogeneity in the test sample

treatment effects estimated using BJS
(1) (2) (3) (4) (5) (6)

Food (0/1) 0.223∗
(0.12)

Chem., pharma., rubber (0/1) -0.215
(0.14)

Wood, paper, furniture (0/1) 0.0503
(0.22)

Nat. gas indispensable (0/1) 0.341∗∗∗
(0.13)

EU ETS (0/1) 0.231∗∗∗
(0.07)

Gas intensive (0/1) 0.313∗∗∗
(0.11)

R2 0.01 0.02 0.00 0.08 0.01 0.02
N 107 107 107 100 107 107
Standard errors in parentheses
∗ ? < 0.10, ∗∗ ? < 0.05, ∗∗∗ ? < 0.01

Note: OLS regressions in the test sub-sample. The outcome variable is the treatment effect (on gas consumption
in 2022h2) as estimated by the imputation methods by Borusyak et al. (2021).
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Appendix H Gas intensive firms

We analyze administrative data from CSEA where we observe monthly natural gas con-
sumption by gas intensive firms, as defined by the Italian legislation, for years 2019, 2021 and
2022.50 Gas consumption is measured at the gas meter level and transmitted to CSEA from
the retailers; thus measurement error should be very small. We match our data to the Invind
survey to obtain information on fixed-price contracts, and restrict ourselves to the period
2021-2022 for which we have more observations. Our final matched sample is a balanced
panel of 126 firms. In order to avoid having cohorts with very few firms, we collapse the
data at the quarterly frequency and define cohorts of treatment as follows:

�8 =



2021@3, if �2021 = 0 and � 60B,2022 = 0

2022@1, if �2021 = 1 and and 0 ≤ <
60B

8
< 3

2022@2, if �2021 = 1 and and 3 ≤ <
60B

8
< 6

2022@3, if �2021 = 1 and and 6 ≤ <
60B

8
< 9

2022@4, if �2021 = 1 and and 9 ≤ <
60B

8
< 12

0, if �2021 = 1 and <60B

8
= 12

(8)

Going from the earliest treated to the latest treated, cohorts have the following number of
firms: 38, 31, 4, 4 and 14. The pure control group includes 35 firms. The outcome variable
is the log consumption of natural gas. Data displays strong seasonal patterns which are
heterogeneous across firms. Thus we present results from two specification: our baseline
(as in equation (3)) and an augmented version which includes firm-by-quarter fixed effects.
In the latter model, the earliest treated cohort drop out because the last two quarters are
not observed both before and after treatment. We use the Borusyak et al. (2021) estimator
without any weights.

Figure A.1 presents the event-study graph from the two specifications, baseline in panel (a)
and augmented in panel (b). There is no evidence of a pre-trend. Treatment effects are small
and close to zero for the first four quarters. In the last two quarters, the baseline model shows
a drop with very large standard errors, while the augmented model cannot estimate these
two effects.

50See Ministerial Decree n.541 of 2021.
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Figure A.1: Event-study estimates for the log quantity of gas among gas intensive firms

(a) Baseline model

(b) Augmented model with firm-by-quarter fixed effects

Note: The figures show average causal effects of the expiration of a fixed-price contract on the log quantity of
natural gas. Average causal effects before and after the treatment are estimated in two separate regressions,
using the “imputation” estimator by Borusyak et al. (2021).

To test for the presence of the heterogeneity across calendar periods, we compute treatment
effects by quarter and by semester. The results, reported in Table A.1, are qualitatively in line
with the evidence from Invind presented in the main body of the paper. Treatment effects are
close to zero until mid-2022; afterwards they are negative. In our augmented specification,
the coefficients imply a 8% reduction in the second half of 2022, barely insignificant at the
90% level. In the Invind analysis, the treatment effect for this group in this period was very
small and positive, but only 28 gas intensive firms were included in the sample; the effect
was equal to - 25% for the remaining firms. Overall, we think that the evidence presented
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in this section corroborates two results of our main analysis: a) gas consumption drops, if
anything, only in the second semester 2022; b) in that period, gas intensive firms reduce their
gas consumption much less than other firms.

Table A.1: Treatment effects by calendar time among gas intensive firms

(1) (2) (3) (4)

ATT 21q3 0.01 0.00
(0.15) (.)

ATT 21q4 0.03 0.00
(0.10) (.)

ATT 22q1 0.04 0.01
(0.07) (0.06)

ATT 22q2 -0.05 0.00
(0.08) (0.07)

ATT 22q3 -0.05 -0.08
(0.11) (0.05)

ATT 22q4 -0.07 -0.09
(0.07) (0.05)

ATT 21h2 0.02 0.00
(0.11) (.)

ATT 22h1 -0.00 0.01
(0.06) (0.06)

ATT 22h2 -0.06 -0.08
(0.07) (0.04)

pvalue pre-trend 0.55 0.31 0.55 0.31
FirmXquarter FE No Yes No Yes
N 1008 854 1008 854

Note: the table presents the treatment effects of the expiration of a fixed-price contract in different calendar periods. Standard errors are
reported in parentheses.
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Appendix I Electricity intensive firms

We analyze administrative data from CSEA where we observe monthly electricity consump-
tion by electricity intensive firms, as defined by the Italian legislation, for years 2018-2022.51
Electricity consumption is measured at the meter level and transmitted to CSEA from the
retailers; thus measurement error should be very small. We match our data to the Invind
survey to obtain information on fixed-price protection, and restrict ourselves to the period
2020-2022. Our final matched sample is a balanced panel of 279 firms. In order to avoid
having cohorts with very few firms, we collapse the data at the quarterly frequency and
define cohorts of treatment as follows:

�8 =



2021@3, if �2021 = 0 and �4;4 ,2022 = 0

2022@1, if �2021 = 1 and and 0 ≤ <4;4
8

< 3

2022@2, if �2021 = 1 and and 3 ≤ <4;4
8

< 6

2022@3, if �2021 = 1 and and 6 ≤ <4;4
8

< 9

2022@4, if �2021 = 1 and and 9 ≤ <4;4
8

< 12

0, if �2021 = 1 and <4;4
8

= 12

(9)

Going from the earliest treated to the latest treated, cohorts have the following number of
firms: 106, 99, 5, 5 and 19. The pure control group includes 45 firms. The outcome variable
is the log consumption of electricity. We present results from our baseline, as in equation
(3). We use the Borusyak et al. (2021) estimator without any weight. Figure A.1 presents the
event-study graph. Treatment effects are very small and fluctuates around zero. Estimates
by calendar periodo (not reported) are always close to zero.

51See Ministerial Decree n.541 of 2021.
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Figure A.1: Event-study estimates for the log quantity of electricity among electricity intensive firms

Note: The figures show average causal effects of the end of price protection on the log quantity of electricity.
Average causal effects before and after the treatment are estimated in two separate regressions, using the
“imputation” estimator by Borusyak et al. (2021). Confidence intervals at the 95% level.
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Appendix J Additional results

Figure A.1: Baseline results with different diff-in-diff estimators

(a) Average costs of electricity (b) Average costs of natural gas

(c) Quantity of electricity (d) Quantity of natural gas

Note: The figures show average causal effects of the end of price protection on the average costs of electricity
and natural gas (panels (a) and (b)) and the corresponding demanded quantities (panels (c) and (d)). Each color
corresponds to a different estimation procedure. Standard errors are clustered at the firm level. Confidence
intervals are at the 95% level.
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Figure A.2: Baseline results controlling for differential time trends

(a) Average costs of electricity (b) Average costs of natural gas

(c) Quantity of electricity (d) Quantity of natural gas

Note: The figures show average causal effects of the end of price protection on the average costs of electricity
and natural gas (panels (a) and (b)) and the corresponding demanded quantities (panels (c) and (d)). Average
causal effects before and after the treatment are estimated in two separate regressions, using the “imputation”
estimator by Borusyak et al. (2021), as described in Section 5. Each color corresponds to a different model where
the baseline equation has been augmented with time fixed effects interacted with a different firm characteristic.
Standard errors are clustered at the firm level. Confidence intervals are at the 95% level.
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Figure A.3: Summary statistics for the yearly sample

(1)
Variables mean
Sectoral composition

Food and beverages 10%
Textiles & apparel 7%
Chem, pharma, rubber 12%
Non-metallic minerals 3%
Metalworking industry 49%
Wood, paper, furniture 13%
Water & waste 6%

Macroarea
North-West 41%
North-East 27%
Center 17%
South or Islands 14%

Firm-level outcomes
Capacity utilization [0-100] 78%
%change in the price of output 2%
Firm with profit (0 if balance or loss) 75%
Negative margin 12%

Energy-related variables
Gas is an indispensable input* (0/1) 37%
Subject to EU ETS 5%
Energy intensive firm 21%

Cohorts of treatment
Pure control 9%
Treated in 2021 58%
Treated in 2022 33%

Number of observations 595

Yearly sample

Note: Invind data. The table reports summary statistics for the yearly sample used in Section 7. Characteristics
are measured in 2019, at baseline. *The variable “Gas is an essential input” is taken from the Busines Outlook
survey of the Bank of Italy and it refers to the beginning of 2022. The number of firms for “% change in the
price of output” is 387 while the number of firms for the profit and loss variables is 542.
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